• Title/Summary/Keyword: lateral stress

Search Result 806, Processing Time 0.026 seconds

Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests

  • Guler, Ersin;Afacan, Kamil B.
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.105-113
    • /
    • 2021
  • Deformations in soils induced by dynamic loads cause damage to the structures above the soil layers. It is important for geotechnical engineering practice that how the soil behaves due to repeated loads and the necessary precautions to be taken accordingly. Turkey is one of the most important seismic regions in Europe and earthquake studies to be conducted in this area are intended to reduce the damage as a result of taking the necessary measures. To determine the properties of soils under dynamic loads, stress-controlled dynamic triaxial and resonant column tests can be performed. In this study, these experiments were implemented in the laboratory on the clayey sand soil samples obtained from Bilecik Söğüt. To evaluate the effects of the confining pressure and rate of loading on the dynamic behavior of soils, samples were dynamically loaded by different rates at varying confining pressures. As a result, the changes in stress-strain properties of soils under dynamic loads were investigated. The alteration in behavior in terms of modulus reduction and damping ratios was obtained to vary a lot with the change of the lateral pressure on soil along with the frequency of the load.

An analytical model of the additional confining stress in a prestress-reinforced embankment

  • Fang Xu;Wuming Leng;Xi Ai;Hossein Moayedi;Qishu Zhang;Xinyu Ye
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.517-529
    • /
    • 2023
  • Using a device composed of two lateral pressure plates (LPPs) and a steel reinforcement bar to apply horizontal pressure on slope surfaces, a newly developed prestress-reinforced embankment (PRE) is proposed, to which can be adopted in strengthening railway subgrades. In this study, an analytical model, which is available of calculating additional confining stress (σH) at any point in a PRE, was established based on the theory of elasticity. In addition, to verify the proposed analytical model, three dimensional (3D) finite element analyses were conducted and the feasibility in application was also identified and discussed. In order to study the performance of the PRE, the propagation of σH in a PRE was analyzed and discussed based on the analytical model. For the aim of convenience in application, calculation charts were developed in terms of three dimensionless parameters, and they can be used to accurately and efficiently predict the σH in a PRE regardless of the embankment slope ratio and LPP side length ratio. Finally, the potential applications of the proposed analytical model were discussed.

An Experimental Study on Uniaxial Compressive Behavior of RC Circular Columns Laterally Confined with Prestressing Aramid Fiber Strap (아라미드 스트랩으로 프리스트레싱 횡구속된 RC 원형기둥의 일축압축거동에 관한 실험적 연구)

  • Han, Sang-Hoon;Hong, Ki-Nam;Lee, Jae-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.159-168
    • /
    • 2009
  • In this study, strength, stiffness and confinement effect with stress-strain and stress-volumetric strain curves for improved uniaxial compressive behavior of RC circular columns laterally confined with prestressing aramid fiber strap were experimentally investigated. The test variables were the specimens with or without axial reinforcing bar and the number and spacing of strap, prestressing level, the types of reinforcing fiber (CFS, GFS). As a result, the failure type of the columns was very stable and strength increase rate was about 73% comparison with the general RC columns. Moreover, the strain increase rate is very small and the axial displacement confinement effect was very effective compared with existry methods (CFS, GFS), the initial and final lateral confinement effect was excellent.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Expression of neurotransmitter(CRF, CRF-R and CRF-BP) related to stress in stomach and zusanli in rats (백서의 위와 족삼리에서 스트레스 관련(CRF, CRF-R, CRF-BP) 신경전달물질의 발현에 대한 연구)

  • Lee, Chang-hyun;Kim, Yung-ho;Song, Beom-yong;Yook, Tae-han
    • Journal of Acupuncture Research
    • /
    • v.20 no.6
    • /
    • pp.89-102
    • /
    • 2003
  • Objective: The expression of CRF(corticotropin releasing factor), CRF-R(receptor) and CRF-BP(binding protein) in CNS neurons projecting to the stomach and ST36 using the pseudorabies virus in the rat was investigated. Methods: After survival times of 5 days following injection of PRV-Ba-Gal, The thirty rats were perfused, and their brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV-Ba-Gal histochemical staining method and(or) CRF, CRF-R and CRF-BP immunohistochemical method. The common expressed areas of the brain projecting to the stomach and zusanli(ST36) following injection of PRV-Ba-Gal were observed with light microscope. Results: 1) The dense accumulation of CRF-immunoreactive terminals is seen in the area postrema, n. tractus solitarius, external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. 2) Aggregates of CRF-R immunoreactive perikarya are found in area postrema, n. tractus solitarius, lateral reticular n., gigantocellular reticular n., locus coeruleues, paraventricular n. of hypothalamus, median eminence, preoptic n., arcuate n. and hind limb area of cerebral cortex. 3) Aggregates of CRF-BP immunoreactive perikarya are found in area postrema, n. tractus solitarius, lateral reticular nucleus, gigantocellular reticular n., locus coeruleues, paraventricular n. of hypothalamus, median eminence and arcuate n.. Conclusions : These results suggest that PRV-Ba-Gal labeled areas projecting to stomach and ST36 may be related to the central autonomic pathways. A part of CNS neurons projecting to the stomach and ST36 were related to expression of CRF, CRF-R and CRF-BP related to the stress in central autonomic center.

  • PDF

Buckling delamination of the PZT/Metal/PZT sandwich circular plate-disc with penny-shaped interface cracks

  • Cafarova, Fazile I.;Akbarov, Surkay D.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.163-179
    • /
    • 2017
  • The axisymmetric buckling delamination of the Piezoelectric/Metal/Piezoelectric (PZT/Metal/PZT) sandwich circular plate with interface penny-shaped cracks is investigated. The case is considered where open-circuit conditions with respect to the electrical displacement on the upper and lower surfaces, and short-circuit conditions with respect to the electrical potential on the lateral surface of the face layers are satisfied. It is assumed that the edge surfaces of the cracks have an infinitesimal rotationally symmetric initial imperfection and the development of this imperfection with rotationally symmetric compressive forces acting on the lateral surface of the plate is studied by employing the exact geometrically non-linear field equations and relations of electro-elasticity for piezoelectric materials. The sought values are presented in the power series form with respect to the small parameter which characterizes the degree of the initial imperfection. The zeroth and first approximations are used for investigation of stability loss and buckling delamination problems. It is established that the equations and relations related to the first approximation coincide with the corresponding ones of the three-dimensional linearized theory of stability of electro-elasticity for piezoelectric materials. The quantities related to the zeroth approximation are determined analytically, however the quantities related to the first approximation are determined numerically by employing Finite Element Method (FEM). Numerical results on the critical radial stresses acting in the layers of the plate are presented and discussed. In particular, it is established that the piezoelectricity of the face layer material causes an increase (a decrease) in the values of the critical compressive stress acting in the face (core) layer.

Proposed Optimized Column-pile Diameter Ratio with Varying Cross-section for Bent Pile Structures (단일 현장타설말뚝의 변단면 분석을 통한 최적 기둥-말뚝 직경비 제안)

  • Kim, Jaeyoung;Jeong, Sangseom;Ahn, Sangyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1935-1946
    • /
    • 2013
  • In this study, the behavior characteristics of bent pile structures with varying cross-section was examined through the measured results of field load test. A framework for determining the bending stress is calculated based on the stresses in the circumference of the pile using 3D finite element analysis. It is found that the bending stress near the pile-column joint changes rapidly and fracture zones occurs easily at variable cross-sections in bent pile structures. Also, the optimized column-pile diameter ratio was analyzed through the relationship between the column-pile diameter ratio and lateral crack load ratio. Based on this study, the optimized column-pile diameter ratio can be obtained near the inflection point of the curve between the column-pile diameter ratio and lateral crack load ratio. Therefore, a present study by considering the optimized variable cross-section condition would be improved bent pile structures design.

Central Effects of Ginsenosides on the Feeding Behavior and Response to Stress in Rats

  • Tohiie Sakata;Hiroshi Etou;kazuma Fujimoto;Kazuyoshi Ookuma;Teruaki Hayashi;Shigeru Arichi
    • Proceedings of the Ginseng society Conference
    • /
    • 1987.06a
    • /
    • pp.20-28
    • /
    • 1987
  • To clarify central mechanisms of ginsenosides, changes in ingestive and ambulatory behaviors were investigated in rats after single or continuous infusion into the third cerebroventricle or various hypothalamic loci. Following single infusion into the third cerebroventricle, ginsenoside Rbl at doses of 0.05, 0.10 and 0.20 $\mu$mol dose-dependently decreased food intake. None of the doses tested affected ambulation. Drinking suppression was only observed at the maximum dose of 0.20 $\mu$mol. Equimolar injections into the peritoneum had no effects on ingestive behavior or ambulation. These findings indicated that ginsenoside Rbl specifically and centrally inhibited food intake. According to analyses of daily feeding patterns, this feeding suppression was the result of a decrease in meal size, not from changes in the postprandial intermeal interval or eating speed. The suppressed food intake was accompanied by hyperglycemia, leaving plasma insulin unaffected. Unilateral micro injection of 0.01 u mot ginsenoside Rb, into the ventromedial hypothalamus specifically decreased food intake, although equimolar injection into the lateral hypothalamic area did not affect food intake. Following continuous infusion of Rg, into the third cerebroventricle, the feeding inhibition due to surgical operation was attenuated. Rbs administered by the same procedure abolished the toxic effect of toxohormone-L on food intake. Taken together, these findings suggest that ginsenoside as a whole may have pharmacological potency to maintain feeding at a certain physiological level.

  • PDF

A Concrete Model for Analysis of Concrete Structure with Confinement (구속응력을 받는 콘크리트 구조물 해석을 위한 콘크리트 구성모델)

  • Kwon, Min-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.433-442
    • /
    • 2003
  • This paper presents a hypoplastic model for three-dimensional analysis of concrete structures under monotonic, cyclic, proportional and non-proportional loading. The constitutive model is based on the concept of equivalent uniaxial strains that allows the assumed orthotropic model to be described via three equivalent uniaxial stress-strain curves. The characteristics of these curves are obtained from the ultimate strength surface in the principal stress space based on the Willam-Warnke curve. A cap model is added to consider loading along or near the hydrostatic axis. The equivalent uniaxial curve is based on the Popovics and Saenz models. The post-peak behavior is adjusted to account for the effects of confinement and to describe the change in response from brittle to ductile as the lateral confinement increases. Correlation studies with available experimental tests are presented to demonstrate the model performance. Tests with monotonic loading on specimens under constant lateral confinement are considered first, followed by biaxial and triaxial tests with cyclic loads. The triaxial test example considers non-proportional loading.

A Biomechanical Comparison of Intralaminar C7 Screw Constructs with and without Offset Connector Used for C6-7 Cervical Spine Immobilization : A Finite Element Study

  • Qasim, Muhammad;Hong, Jae Taek;Natarajan, Raghu N.;An, Howard S.
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.6
    • /
    • pp.331-336
    • /
    • 2013
  • Objective : The offset connector can allow medial and lateral variability and facilitate intralaminar screw incorporation into the construct. The aim of this study was to compare the biomechanical characteristics of C7 intralaminar screw constructs with and without offset connector using a three dimensional finite element model of a C6-7 cervical spine segment. Methods : Finite element models representing C7 intralaminar screw constructs with and without the offset connector were developed. Range of motion (ROM) and maximum von Mises stresses in the vertebra for the two techniques were compared under pure moments in flexion, extension, lateral bending and axial rotation. Results : ROM for intralaminar screw construct with offset connector was less than the construct without the offset connector in the three principal directions. The maximum von Misses stress was observed in the C7 vertebra around the pedicle in both constructs. Maximum von Mises stress in the construct without offset connector was found to be 12-30% higher than the corresponding stresses in the construct with offset connector in the three principal directions. Conclusion : This study demonstrated that the intralaminar screw fixation with offset connector is better than the construct without offset connector in terms of biomechanical stability. Construct with the offset connector reduces the ROM of C6-7 segment more significantly compared to the construct without the offset connector and causes lower stresses around the C7 pedicle-vertebral body complex.