• Title/Summary/Keyword: lateral rigidity

Search Result 87, Processing Time 0.019 seconds

Dose-dependent suppression of tolaasin-induced hemolysis by gadolinium ion (가돌리니움 이온에 의한 톨라신 용혈활성의 농도의존적 억제)

  • Huh, Jeong-Hoon;Yun, Yeong-Bae;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.369-374
    • /
    • 2021
  • Brown blotch disease of oyster mushrooms is caused by tolaasin and its analog peptide toxins which are produced by Pseudomonas tolaasii. Tolaasin peptides form pores in the plasma membrane and destroy the fruiting body structure of mushroom. Lysis of red blood cells, hemolysis, can be occurred by cytotoxic activity of tolaasin. The hemolytic activity of tolaasin is inhibited by metal ions, such as Zn2+ and Ni2+. When Gadolinium ion was added, a biphasic effect was observed on tolaasin-induced hemolysis, an increase in hemolysis at submillimolar concentrations and an inhibition at millimolar concentrations. The mechanism of gadolinium ion-induced inhibition of tolaasin activity may not be similar to those of the inhibitions by other metal ions. Since gadolinium ion has been reported to change a lateral pressure of lipid membrane by binding to the negative charges of membrane lipids, it may not directly work on the tolaasin channel gating, but rather decrease the stability of tolaasin channel by increasing firmness of membrane.

Shaking table tests on seismic response of backdrop metal ceilings

  • Zhou, Tie G.;Wei, Shuai S.;Zhao, Xiang;Ma, Le W.;Yuan, Yi M.;Luo, Zheng
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.807-819
    • /
    • 2019
  • In recent earthquakes, the failure of ceiling systems has been one of the most widely reported damage and the major cause of functionality interruption in some buildings. In an effort to mitigate this damage, some scholars have studied a series of ceiling systems including plaster ceilings and mineral wool ceilings. But few studies have involved the backdrop metal ceiling used in some important constructions with higher rigidity and frequency such as the main control area of nuclear power plants. Therefore, in order to evaluate its seismic performance, a full-scale backdrop metal ceiling system, including steel runners and metal panels, was designed, fabricated and installed in a steel frame in this study. And the backdrop metal ceiling system with two perimeter attachments variants was tested: (i) the ends of the runners were connected with the angle steel to form an effective lateral constraint around the backdrop metal ceiling, (ii) the perimeter attachments of the main runner were retained, but the perimeter attachments of the cross runner were removed. In the experiments, different damage of the backdrop metal ceiling system was observed in detail under various earthquakes. Results showed that the backdrop metal ceiling had good integrity and excellent seismic performance. And the perimeter attachments of the cross runner had an adverse effect on the seismic performance of the backdrop metal ceiling under earthquakes. Meanwhile, a series of seismic construction measures and several suggestions that need to be paid attention were proposed in the text so that the backdrop metal ceiling can be better applied in the main control area of nuclear power plants and other important engineering projects.

Architectural Design Related to the Growth Principles of Tree (나무의 성장원리를 응용한 건축 디자인에 관한 연구)

  • Kim, Tai Young
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.49-57
    • /
    • 2021
  • This study is to find ways to self-produce energy even in buildings through the system of trees that grow by themselves focused on literatures and case studies. It is divided into the structure, circulation and reaction system of tree. 1) In the structural system, the tree is divided into the shoot and root system, and maintains rigidity with the cell membranes. The wind resistance caused by the trunk and crown can be applied to the seismic structure principle of building, and the role of platelike buttresses of lateral roots can be applied to the horizontal truss and suspension bridge. 2) In the circulation system, the transpiration action through the fine stomata of the leaves can be a very effective cooling means because a large amount of heat is released and this method can be directly introduced into the cooling of buildings. 3) In the responsive system, the response system according to environmental changes that can be read from the leaves and flowers of trees can be applied to the roof and exterior design of buildings through the use of new sensing technologies and materials.

Study of the fourteen meridians that include name of P'ung (風) point (십사경맥중(十四經脈中) '풍(風)' 자(字)가 포함(包含)된 경혈(經穴)에 대(對)한 문헌적(文獻的) 고찰(考察))

  • Lee, On-Do;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.17 no.3
    • /
    • pp.125-139
    • /
    • 2000
  • Study of the fourteen meridians that include name of P'ung(風) point. The results were summarized as follows. 1. Pyongp'ung(秉風) is located middle of the supraspinatous fossa(Small intestine Meridian, 手太陽小腸經). we can cute the local area disease and also use to cure the pathway of the Arm greater yang small intestine which is attacked by P'ung(風) disease. 2. Yep'ung(翳風) is located behind the lobule of the auricle, in the depression between the mastoid process and the mandible(Triple Energizer Meridian, 手少陽三焦經). we can cure the local area disease especially hyper yang disease and also use to cure the pathway of the Arm lesser yang triple energizer which is attacked by P'ung(風) and Yo'l(熱) disease. 3. P'ungmun(風門) is located 1.5 chon beside the lower end of the spine of the second thoracic vertebra(Bladder Meridian, 足太陽膀胱經). we can cure the local area disease and also use to cure the pathway of the Leg greater yang bladder which is attacked by P'ung(風) disease. 4. P'ungbu(風府) is located 1 chon above the middle of natural line of the hair at the back of the head, in the depression below the occiptal protuberance(Governor meridian, 督脈). It connects (Liver meridian, 足厥陰肝經) and Yin Link Vessel(陽維脈). we can cure the rigidity and pain in head and nape which is related Yin Link Vessel(陽維脈). 5. P'ungshi(風市) is located on the lateral part of the thigh, 7 hon above the patella(From the greater trochanter to the knee joint is 19 chon, Gallbladder Meridian (足少陽膽經). we can cure the local area disease(leg, knee, etc). 6. P'ungji(風池) is located Below the occipital bone, in the depression on the outer part of the trapezius muscle(Gallbladder Meridian, 足少陽膽經) on a level with P'ungbu(風府) (Governor vessel, 督脈). we can cure the local area disease and also use to cure the pathway of the Leg lesser yang gall bladder which is attacked by P'ung(風) disease.

  • PDF

Reinforcement of shield tunnel diverged section with longitudinal member stiffness effect (종방향 부재의 강성효과를 고려한 쉴드 터널 분기부 보강 및 해석기법)

  • Lee, Gyu-Phil;Kim, Do
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.675-687
    • /
    • 2019
  • In recent years, the needs for double deck-tunnels have increased in large cities due to the increase in traffic volume and high land compensation costs. In Korea, a network type tunnel which is smaller than general road tunnels and crosses another tunnel underground is planned. In the shield tunnel joints between the existing shield tunnel and the box-type enlargement section, a partial steel-concrete joint is proposed where the bending moment is large instead of the existing full-section steel joint. In order to analysis the enlargement section of the shield tunnel diverged section to reflect the three-dimensional effect, the two-dimensional analysis model is considered to consider the column effect and the stiffness effect of the longitudinal member. A two-dimensional analysis method is proposed to reflect the stiffness of the longitudinal member and the column effect of the longitudinal point by considering the rigidity of the longitudinal member as the elastic spring point of the connecting part in the lateral model. As a result of the analysis of the model using the longitudinal member, it was considered that the structural safety of the partial steel-concrete joint can be secured by reducing the bending moment of the joint and the box member by introducing the longitudinal member having the stiffness equal to or greater than a certain value.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.

Development of Self-centering Viscous Damper System for Seismic Retrofit of Ordinary Concentrically Braced Frame (보통중심가새골조의 내진보강을 위한 자가복원형 점성감쇠기 시스템 개발)

  • Do Yeon Kim;Hyuck Soon Choi;Joohyung Kang;Yongsun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.70-78
    • /
    • 2023
  • The ordinary concentrically braced frame has an advantage of having simple design procedure. For this reason, it has been widely used for the small-sized frame structures subject to moderate or lower magnitude earthquake, even though its seismic performance against the earthquake load is not much effective compared to that of other frame systems. To enhance seismic performance of the ordinary concentrically braced frame where the bracing has a weakness for compressive behavior under lateral earthquake, seismic retrofitting by viscous damper has been commonly introduced. However, the viscous damper, itself, generally does not have stiffness for restoring the structure to the original position. This may cause residual displacement to the structure. In this paper, a self-centering viscous damper system in which upper and lower beams having flexural rigidity play a role as a nonlinear-elastic spring, restoring the spring-damper system subject to external displacement history to its original location, is developed. The numerical analysis for a simplified frame structure shows how including the developed self-centering viscous damper system leads to an enhanced seismic performance of the frame structure through energy dissipation during earthquake excitation.