• Title/Summary/Keyword: lateral drift

Search Result 280, Processing Time 0.024 seconds

Performance Evaluation of the Drift Control in Residential Tall Building Using the Dampers (제진장치를 적용한 초고층 주거형 건축물의 횡변위 제어 성능 평가)

  • Park, Ji-Hyeong;Kim, Tae-Ho;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.265-273
    • /
    • 2008
  • The problem controlling lateral drift by the wind and the earthquake is very important in high rise buildings. But, outrigger system, generally used for residential tall buildings in Korea, has weak points with the occupancy of special space, the difficult construction and the long duration of works. On the other hand, the damper reduces story drifts of building structure by absorbing vibration energy induced by the dynamic loads and the application of damper systems is relatively simple. Also, the lateral drift control system such as outrigger system may raise the wind vibration problem of serviceability like human comfort and this problem may need another vibration control devices. Accordingly, we analyze the effect of the drift control using various dampers to substitute for outrigger system as the efficient system in residential tall buildings.

Spin Signals in Lateral Spin Valves with Double Nonmagnetic Bottom Electrodes

  • Lee, B.C.
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.81-84
    • /
    • 2008
  • Spin injection and detection in lateral spin valves with double nonmagnetic bottom electrodes are investigated theoretically. Spin-polarized current injected from a magnetic electrode is split to two bottom electrodes, and nonlocal spin signals between the other magnetic electrode and the nonmagnetic electrodes are calculated from drift-diffusion equations. It is shown that the spin signal is approximately proportional to the associated current in the electrode.

An Evaluation of the Dampers for the Drift Control in Resident Tall Building (초고층 주거형 건축물의 횡변위 제어를 위한 제진장치의 적용성 평가)

  • Park, Ji-Hyeong;Kim, Tae-Ho;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.499-504
    • /
    • 2008
  • Recently, the problem controlling lateral drift is important in tall buildings for improvement in economic efficiency and habitability. But, the Outrigger System, general used for tall building in Korea, has weak points with the occupancy of special space and the long duration of works. The dampers are applied to actively control building's response by earthquake and wind load in these days. Accordingly, we analyze the effect of the drift control using various dampers to substitute for the Outrigger System as the efficient system in tall buildings.

  • PDF

Drift Control of the Structure Using Elasto-Plastic Hysteretic Dampers in High Rise Buildings (탄소성 이력댐퍼를 적용한 초고층 건축물의 변위제어)

  • Park, Ji-Hyeong;Park, Tae-Won;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.851-856
    • /
    • 2007
  • Recently, the matter controlling lateral drift is important in high rise buildings, In particular, seismic control dampers, such as mass damper and hysteretic damper, are emerging in the field of actively reducing drift. But. seismic control dampers have weak points with the lack of quantitative analysis and maintenance of the device. Accordingly, in this study we examine the structural characteristic of Steel Elasto-Plastic Hysteretic Damper, which is needless of maintenance, and then consider the basic conditions in the design and construction of the optimal seismic control effect which uses this device.

  • PDF

Development of Drift Design Methods with Weight Modification Factors (중량 수정계수를 고려한 변위조절설계법 개발)

  • 서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.161-168
    • /
    • 2003
  • In the drift design of high-rise buildings, once the geometry and dimensions of a structure are predetermined, engineer's remaining work is determination of the member size to satisfy the strength and the stiffness requirements. For the case of highrise buildings, designs are determined by the stiffness requirements at the final stage of structural design. Thus, engineers try to find a minimum weight design with maximum lateral stiffness. However, there is no guideline for engineers on the required weight of structures per unit area to satisfy the stiffness requirements. In this study, drift design method considering weight modification factors are presented and applied to a 20-story structure. The proposed drift design method considering weight modification factors may give the guideline for engineers on the amount of structural weight to attain target displacement.

  • PDF

Simulation of displacement history using contact element in traditional wooden frame (접촉요소를 적용한 전통목조 도리방향 프레임의 변위이력 시뮬레이션에 관한 연구)

  • Hwang Jong-Kuk;Hong Sung-Gul;Jung Sung-Jin;Lee Young-Wook;Kim Nam-Hee;Bae Byoung-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.421-426
    • /
    • 2006
  • To examine the behaviors of traditional wooden structural frame in Korea in direction of beam, an experimental study was performed. The interior frame of Daewoongjeon of Bongjeongsa was selected as a model, which has two short exterior columns and one high inside column. The experimental frame has 1/2 scale and lateral forces are applied at high inside column by using drift control. The vertical gravity loads are applied on the frame. From the results of experiment it was shown that the stiffness and lateral capacity of the frame was increased when vertical loads are applied and the force-drift relationship in positive load direction was not same as in negative load direction. And push-over analysis are performed by using macro model in which the rotational and shear springs which were derived from the another experiments of subassemblies were used. The numerical analysis with macro model showed a good correspondence with the experiment within 2% story drift.

  • PDF

Modelling of seismically induced storey-drift in buildings

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.459-478
    • /
    • 2010
  • This paper contains detailed descriptions of a dynamic time-history modal analysis to calculate deflection, inter-storey drift and storey shear demand in single-storey and multi-storey buildings using an EXCEL spreadsheet. The developed spreadsheets can be used to obtain estimates of the dynamic response parameters with minimum input information, and is therefore ideal for supporting the conceptual design of tall building structures, or any other structures, in the early stages of the design process. No commercial packages, when customised, could compete with spreadsheets in terms of simplicity, portability, versatility and transparency. An innovative method for developing the stiffness matrix for the lateral load resistant elements in medium-rise and high-rise buildings is also introduced. The method involves minimal use of memory space and computational time, and yet allows for variations in the sectional properties of the lateral load resisting elements up the height of the building and the coupling of moment frames with structural walls by diaphragm action. Numerical examples are used throughout the paper to illustrate the development and use of the spreadsheet programs.

Experimental study on seismic performances of steel framebent structures

  • Liang, Jiongfeng;Gu, Lian S.;Hu, Ming H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1111-1123
    • /
    • 2016
  • To study seismic performance of steel frame-bent structure, one specimen with one-tenth scale, three-bay, and five-story was tested under reversed cyclic lateral load. The entire loading process and failure mode were observed, and the seismic performance indexes including hysteretic loops, skeleton curve, ductility, load bearing capacity, drift ratio, energy dissipation capacity and stiffness degradation were analyzed. The results show that the steel frame-bent structure has good seismic performance. And the ductility and the energy dissipation capacity were good, the hysteresis loops were in spindle shape, which shape were full and had larger area. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. It can be helpful to design this kind of structure in high-risk seismic zone.

Pushover Tests of 1 : 5 Scale 3-Story Reinforced Concrete Frames (1 : 5 축소 3층 철근콘크리트 골조의 횡방향 가력실험)

  • 이한선;우성우;허윤섭;송진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.529-536
    • /
    • 1999
  • The objective of the research stated herein is to observe th elastic and inelastic behaviors and ultimate capacity of 1 : 5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames without and with infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained to be an inverted triangle by using the whiffle tree. From the results of tests, the relations between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry are investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry are compared.

  • PDF

Discrete Optimal Design of Tall Steel Structures subject to Lateral Drift Constraints (횡변위 구속조건을 받는 고층철골구조물의 이산형 최적설계)

  • 김호수
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.229-237
    • /
    • 1998
  • 본 연구는 횡변위 구속조건을 받는 고층철골구조물의 이산형 최적설계를 위해 효율적인 쌍대알고리즘을 제시하고자 한다. 양함수형태의 횡변위 구속조건을 설정하기 위해 가상일의 원리가 적용되면 고층철골조의 설계변수의 수를 줄여주기 위해 쌍대알고리즘내에 단면특성관계식이 추가된다. 이 알고리즘의 검증을 위하여 횡하중을 받는 네 가지 형태의 고층철골조 예제가 제시되며, 반복과정에서 수렴된 최종물량을 기존의 최적설계방법과 비교해 봄으로써 제시된 알고리즘의 효율성이 검토된다.

  • PDF