• Title/Summary/Keyword: lateral drift

Search Result 280, Processing Time 0.021 seconds

Lateral Drift Control Technique of High-Rise Shear Wall Core Structural System (고층 전단벽 코어구조시스템의 횡변위 제어방안)

  • Han, Seong-Baek;Kang, Myoung-Hee;Nam, Kyung-Yun;Lee, Seong-Su;Lee, Han-Joo;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.151-154
    • /
    • 2008
  • This study presents the efficient lateral drift control optimal technique that can control quantitatively lateral drift of high-rise structures. To this end, optimal design algorithm is formulated and then lateral drift control optimal program is developed. The 130 story shear wall core model is considered to illustrate the features of lateral drift control technique proposed in this study

  • PDF

Lateral Drift Control of High-rise Buildings using Partial Reanalysis Algorithm (부분재해석 기법을 이용한 고층건물 횡변위제어)

  • Lee, Jae-Cheol;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2009
  • This paper alined at the development of a lateral drift control method that is able to quantitatively control the lateral drift of global node. For this, we applied an efficient partial reanalysis algorithm. By using this algorithm, we could recalculate the displacement and member force of the specific node without reanalyzing the entire structure when member stiffness changes partially. The theoretical concepts of the algorithm are so simple that it is not necessary to solve the complicate differential equation or to repeat the analysis of entire structure. The proposed method calculates the drift contribution of each member for the global displacement according to the variation of section sizes by using the algorithm. Then by changing the member sizes as the order of drift contribution, we could control the lateral drift of global node with a minimum quantity of materials. 20 story braced frame structure system is presented to illustrate the usefulness of proposed method. It is shown that the proposed method is very effective in lateral drift control and the results obtained by proposed method are consistent with those of commercial analysis program.

Stiffness-Based Optimization for the Lateral Drift Control of Outrigger System (아웃리거시스템의 횡변위제어를 위한 강성최적화 기법)

  • Lee, Han-Joo;Park, Young-Sin;Nam, Kyung-Yun;Lee, Seong-Su;Shin, Hyo-Bum;Kim, Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.210-215
    • /
    • 2008
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift and evaluates the structural behavior characteristics and efficiency for tall outrigger system subject to lateral loads. To this end, displacement sensitivity depending on behavior characteristics of outrigger system is established and approximation concept that can efficiently solve large scale problems is introduced. Specifically, under the 'constant-shape' assumption, resizing technique of member is developed. Two types of 60 story frameworks are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

Lateral Drift Control of 3-D Steel Structures Using Approximation Concept (근사화 개념을 이용한 삼차원 철골조 구조물의 횡변위 제어에 관한 연구)

  • Lee, Han-Joo;Lim, Young-Do;Kim, Ho-Soo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.96-102
    • /
    • 2004
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift for 3-D steel frameworks subject to lateral loads. To this end, the displacement sensitivity depending on behavior characteristics of 3-D steel frameworks is established. Also, approximation concept that can preserve the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Resizing sections in the stiffness-based optimal design are assumed to be uniformly varying in size. Two types of 30-story frames are presented to illustrate the features of the Quantitative lateral drift control technique proposed in this study.

  • PDF

Lateral Drift Optimal Control Technique of Shear Wall-Frame Structure System using Composite Member (합성부재를 이용한 전단벽-골조 구조시스템의 횡변위 최적제어방안)

  • Lee, Han-Joo;Jung, Sung-Jin;Kim, Ho-Soo
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.191-198
    • /
    • 2005
  • The effective stiffness-based optimal technique to control quantitatively lateral drift for shear wall-Frame structure system using composit member subject to lateral loads is presented. Also, displacement sensitivity depending on behavior characteristics of structure system is established and approximation concept that preserves the generality of the mathematical programming is introduced. Finally, the resizing technique of shear wall, frame and composite member is developed and the example of 20 story framework is presented to illustrate the features of the quantitative lateral drift control technique.

  • PDF

Development of Resizing Techniques for Drift Designs of High-rise Buildings subjected to Lateral and Vertical Loads (횡하중과 연직하중을 받는 고층건물의 변위설계를 위한 재분배기법 개발)

  • 서지현;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.49-58
    • /
    • 2004
  • Drift design of a high-rise building is a governing factor in the determination of structural weights and lateral resisting systems. However, high-rise buildings are composed of tens of thousands of structural member, designer can not know which members are active to lateral drift control and how much they contribute to lateral drifts. Resizing technique was proved to be a practical method for drift design of high-rise buildings. However, no resizing algorithm has been considered the effect of vertical loads in drift designs. Thus, in this paper, a resizing algorithm has been developed for drift designs of high-rise buildings subjected to both lateral and vertical loads. The drift design model has been applied to drift designs of two high-rise building examples.

Drift Control for Multistory Moment Frames under Lateral Loading

  • Grigorian, Carl E.;Grigorian, Mark
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.355-365
    • /
    • 2013
  • The paper reports results of recent studies on the effects of column support conditions on the lateral displacements of moment frames at incipient collapse. The article presents a number of exercises in the plastic theory of structures that lead to useful design formulae. It has been shown that Drift Shifting (DS) is caused due to differences in the stiffnesses of adjoining columns, and that changes in drift ratios are more pronounced at first level column joints in both fixed as well as pinned base frames. In well proportioned moment frames, DS in the upper levels could be minimized, even reduced to zero. It has been demonstrated that DS can be eliminated in properly designed fixed and grade beam supported (GBS) moment frames. Several examples, including symbolic P-delta effects, have been provided to demonstrate the validity and the applications of the proposed ideas to the design and drift control of moment frames. The proposed methodology is exact within the bounds of the theoretical assumptions and is well suited for preliminary design and teaching purposes.

Lateral Drift Control and Resizing Technique for Tall Buildings using Lateral-Stiffness Influence Matrix (횡강성 영향행렬을 이용한 고층건물의 횡변위 제어 및 단면 재산정 방안)

  • 이한주;김치경;김호수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.271-279
    • /
    • 2002
  • This study develops the module to find the lateral stiffness influence matrix of each story and performs the displacement sensitivity analysis by virtual load method for the efficiency of optimal design using lateral stiffness influence matrix. Also, resizing technique based on the estimated lateral stiffness increment factors is developed to apply directly the results of optimal design. To this end, resizing technique is divided into the continuous and discrete section design methods. And then the relationships between section properties and section size are established. Specifically, an initial design under strength constraints is first performed, and then the lateral load resistant system is designed to control lateral displacements yet exceeding the drift criteria. Two types of 45-story three dimensional structures we presented to illustrate the features of the lateral drift control and resizing technique for tall buildings proposed in this study.

Dynamic Sensitivity Analysis For Lateral Drift Control Of Frame-Shear Wall Structures (골조-전단벽 구조물의 횡변위제어를 위한 동적 민감도 해석)

  • Lee, Han-Joo;Kim, Ji-Youn;Han, Seung-Baek;Nam, Kyung-Yun;Kim, Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.571-576
    • /
    • 2007
  • This study presents stiffness-based optimal design to control quantitatively lateral drift of frame-shear wall structures subject to seismic loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also, the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. The 12 story frame-shear wall structural models is considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

A Study on Quantitative Lateral Drift Control of Tall Steel Braced Frames subject to Horizontal Loads (수평하중을 받는 고층철골가새골조의 정량적인 횡변위제어에 관한 연구)

  • Kim, Ho-Soo;Lee, Han-Joo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.397-406
    • /
    • 2000
  • This study presents an effective optimal technique to control quantitatively lateral drift for tall steel braced frames subject to horizontal loads. In this paper, the displacement sensitivity depending on behavior characteristics of steel braced frames is established, and also the approximation concept that has the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Especially, the commercially available standard steel sections are used for the discrete selection of member sizes. Three types of 12-story braced frames and a 30-story braced framework are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF