• Title/Summary/Keyword: lateral capacity

Search Result 814, Processing Time 0.022 seconds

Hysteretic Behavior of Steel Damper using Guide Plate and Channel (가이드 판과 채널을 사용한 강재 댐퍼의 이력 거동)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.61-68
    • /
    • 2021
  • In this study, a rocking behavior experiment using a guide plate and a guide channel to prevent lateral deformation of a steel damper was planned. For this purpose, strut I-type specimen I-1 and strut S-type specimen S-1 were prepared. The experimental results were compared with the existing experimental results of SI-260 and SS-260 under the same conditions without the details of lateral deformation prevention in order to evaluate the effect of preventing lateral deformation. The damper with lateral deformation prevention detail was evaluated to have superior strength capacity, deformation capacity, and energy dissipation capacity than the damper without it. Therefore, the lateral deformation prevention detail was evaluated to have a good effect in improving the design capability of the steel damper.

Estimation of Pile Ultimate Lateral Load Capacity in Sand Considering Lateral Stress Effect (응력상태를 고려한 사질토지반에 관입된 말뚝의 극한수평지지력 분석 및 평가)

  • Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Hwang, Sung-Wuk;Kim, Min-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • In this study, ultimate lateral load capacity of piles is analyzed with consideration of lateral stress effect. Based on results obtained in this study, a method for the estimation of ultimate lateral load capacity is proposed. This makes it possible to more realistically estimate the ultimate lateral load capacity under various stress states caused by in-situ soil condition and pile installation process. Calibration chamber test results with various soil conditions were used in the analysis. From the test results, it was found that effect of the lateral stress was greater than that of the vertical stress on the ultimate lateral load capacity of piles. It was also found that, as the relative density increases, displacements required to reach the ultimate state increases, showing relative displacements of around 14% and 18-25% for $D_R$ : 55% and 86%, respectively. Based on results obtained in this study, a methodology for the estimation of ultimate lateral load capacity of piles using correction factors was proposed. Results from proposed method matched well measured results.

Behavior and design of steel I-beams with inclined stiffeners

  • Yang, Yang;Lui, Eric M.
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.183-205
    • /
    • 2012
  • This paper presents an investigation of the effect of inclined stiffeners on the load-carrying capacity of simply-supported hot-rolled steel I-beams under various load conditions. The study is carried out using finite element analysis. A series of beams modeled using 3-D solid finite elements with consideration of initial geometric imperfections, residual stresses, and material nonlinearity are analyzed with and without inclined stiffeners to show how the application of inclined stiffeners can offer a noticeable increase in their lateral-torsional buckling (LTB) capacity. The analysis results have shown that the amount of increase in LTB capacity is primarily dependent on the location of the inclined stiffeners and the lateral unsupported length of the beam. The width, thickness and inclination angle of the stiffeners do not have as much an effect on the beam's lateral-torsional buckling capacity when compared to the stiffeners' location and beam length. Once the optimal location for the stiffeners is determined, parametric studies are performed for different beam lengths and load cases and a design equation is developed for the design of such stiffeners. A design example is given to demonstrate how the proposed equation can be used for the design of inclined stiffeners not only to enhance the beam's bearing capacity but its lateral-torsional buckling strength.

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

A Comparison between predicted and measured values for lateral bearing capacity of PHC pile in weathered Granite soil (화강풍화토 지반에 타입된 PHC 말뚝의 수평지지력에 대한 추정치와 실측치의 비교)

  • 오재화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.144-150
    • /
    • 2000
  • This study dealt with the comparison of lateral baring capacity for vertical PHC pile between predicted and measured values driven in weathered granite soils to build world cup gymnasium in Kwangju area. Recently, the calculation of horizontal bearing capacity of piles foundation has been considered very important for earthquake or wind resistant design in Korea. During this study , Matlock & Reese, Broms and Chang's methods were selected in prediction of lateral resistant of PHC piles. As for case study, the prediction values were compared with 5 measured ones based on ASTM. The result showed that prediction values proposed by Matlock & Reese , Chang and Broms were smaller that real values. Three proposed methods by Matlock & Reese and Chang based on lateral deflection and Broms by ultimated lateral resistance turned out valid in view of engineering practice.

  • PDF

A Study on Lateral Bearing Capacity of PHC Piles Driven Vertically in Decomposed Granite and Clayey Soil (화강토와 점토지반에 연직으로 타입된 PHC말뚝의 수평지지력에 관한 연구(지반공학))

  • 문영민;이문수;이대재
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.466-470
    • /
    • 2000
  • Recently, the calculation of horizontal bearing capacity of piles foundation has been considered very important for earthquake or wind resistant design in Korea. This study deals with the lateral resistance of PHC pile instead of vertical capacity for earthquake resistant design as well as wind. As case study, the prediction values were compared with measured ones based on ASTM. During this research, Matlock & Reese, Davisson & Gill, Broms and Chang's methods were selected in calculating prediction of lateral resistance of PHC piles. In decomposed granite and clayey soils, The result showed that prediction values proposed by Matlock & Reese(Davisson & Gill), Chang and Broms were smaller values than real values. four proposed methods by Matlock & Reese(Davisson & Gill) and Chang based on lateral deflection and Broms by ultimate lateral resistance turned out valid in view of engineering practice.

  • PDF

Evaluation of Inelastic Displacement Response of Bridge Structures Using Lateral Load Distributions (횡하중 분배방법을 이용한 교량구조물의 비탄성 변위응답 평가)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.15-22
    • /
    • 2005
  • In order to evaluate seismic performance of multi-degree-of-freedom bridge structure, moderate lateral load distribution methods using the pushover analysis were developed by many researchers. One of important variables to improve an accuracy of pushover analysis is lateral load distribution. In this study, pushover analyses were performed using the five types of lateral load distribution and seismic performances were evaluated by capacity spectrum method (CSM). To verify an accuracy of suggested lateral load distribution, the maximum displacement estimates by the CSM were compared to those by inelastic time history analysis.

  • PDF

Effect of Relative Density on Lateral Load Capacity of a Cyclic Laterally Loaded Pile in Sandy Soil (모래지반의 상대밀도에 따른 횡방향 반복재하 시 말뚝의 극한지지력 평가)

  • Baek, Sung-Ha;Kim, Joon-Young;Lee, Seung-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.41-49
    • /
    • 2016
  • Pile foundations used as offshore support structures are dominantly subjected to cyclic lateral loads due to wind and waves. In this study, a series of cyclic lateral load tests were performed on a pre-installed aluminum flexible pile in sandy soil with three different relative densities (40%, 70% and 90%) in order to evaluate the effect of cyclic lateral loads on lateral load capacity of a pile. The cyclic lateral loads increased the lateral load capacity of a pile at 40% relative density, whereas they decreased it at 70% and 90% relative densities. This can be explained by the fact that the cyclic lateral loads slightly densified the surrounding soil in relatively loose sand (40%), while the surrounding soil was disturbed in relatively dense sand (70% and 90%). These effects were more obvious as the cyclic lateral load amplitude increased, being independent with the saturation. Also, from the test results, an empirical equation for the lateral load capacity of a cyclic laterally loaded pile in sandy soil was developed in terms of relative density of the soil and the cyclic lateral load amplitude.

Seismic behavior of steel frames with replaceable reinforced concrete wall panels

  • Wu, Hanheng;Zhou, Tianhua;Liao, Fangfang;Lv, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1055-1071
    • /
    • 2016
  • The paper presents an innovative steel moment frame with the replaceable reinforced concrete wall panel (SRW) structural system, in which the replaceable concrete wall can play a role to increase the overall lateral stiffness of the frame system. Two full scale specimens composed of the steel frames and the replaceable reinforced concrete wall panels were tested under the cyclic horizontal load. The failure mode, load-displacement response, deformability, and the energy dissipation capacity of SRW specimens were investigated. Test results show that the two-stage failure mode is characterized by the sequential failure process of the replaceable RC wall panel and the steel moment frame. It can be found that the replaceable RC wall panels damage at the lateral drift ratio greater than 0.5%. After the replacement of a new RC wall panel, the new specimen maintained the similar capacity of resisting lateral load as the previous one. The decrease of the bearing capacity was presented between the two stages because of the connection failure on the top of the replaceable RC wall panel. With the increase of the lateral drift, the percentage of the lateral force and the overturning moment resisted by the wall panel decreased for the reason of the reduction of its lateral stiffness. After the failure of the wall panel, the steel moment frame shared almost all the lateral force and the overturning moment.

Bearing Capacity of Driven H-Piles in Embankment (성토지반에 타입된 H형강 말뚝의 지지거동)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF