• 제목/요약/키워드: lateral acceleration

검색결과 296건 처리시간 0.036초

설계기준 개선에 따른 기존 고속철도 교량 내진보강 필요성 고찰 (The Consideration of the Necessity of Seismic Retrofitting for Existing High Speed Rail Bridge in Accordance with Design Guidelines Improvements)

  • 김도균;장한택
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.445-453
    • /
    • 2013
  • 본 논문은 등가정적하중법에 의해 설계된 경부고속철도 구간 중 PSC Box Girder 대표 교량들을 대상으로 등가정적법과 응답스팩트럼법을 이용하여 지진력이 산정되었고, 지진력의 차이가 확인된다. 해석법 비교를 위하여 상용유한요소 프로그램을 이용하여 5개 교량에 대한 3차원 유한유소 모델이 구성되었고, 각 해석법의 의한 지진력이 비교되었다. 고유주기가 저차에서 지배되는 경우, 지반조건과 고유주기의 따라 지진가속도가 산정되는 응답스팩트럼법과 등가정적하중법과의 차이가 커지는 것이 확인되었다. 이렇게 산정된 지진력에 차이에 따른 내진성능 평가 결과 설계 지진력 보다 큰 지진력의 적용으로 인한 것으로 내진 보강의 필요성을 의미한다.

UIC518 방법에 의한 국내 및 프랑스 고속철도 차량 진동가속도 분석 (Analysis of the acceleration measured on Korea and France high speed railways using UIC518 code)

  • 최일윤;김남포;이준석;임지훈
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8516-8524
    • /
    • 2015
  • 궤도틀림은 직접 궤도검측을 통해서도 평가가 가능하지만, 차체 진동가속도의 계측을 통해서도 간접적으로 관리상태를 파악할 수 있으며, 최근 이에 대한 연구가 활발히 진행되고 있다. 이러한 간접적인 방법을 통해 국내 경부고속철도 자갈궤도의 유지보수 수준을 조사하고 평가하기 위하여, 국내 경부고속철도와 프랑스 고속철도(TGV)의 차체 진동가속도 계측을 수행하고 UIC518 규격에 제시된 방법에 따라 차체 진동가속도 계측 데이터에 대한 신호처리를 수행하였다. 차체 진동가속도는 차량의 주행속도에 따라서도 영향을 많이 받으므로, 신호처리된 계측결과를 속도대역별로 구분하여 상하방향 차체가속도 및 좌우방향 차체가속도의 크기에 따른 빈도분포를 계산하였다. 이렇게 계산된 빈도분포로부터 차량 주행속도에 따른 차체 진동가속도의 분포특성을 조사하고 UIC518에 제시된 기준과 비교하였다. 또한, 경부고속철도와 프랑스 고속철도의 상하방향 및 좌우방향 차체가속도의 빈도분포에 대한 정량적 비교분석을 수행하고, 국내 경부고속철도 자갈궤도 구간의 궤도틀림 관리수준을 평가하였다.

대차 관성측정 장치에서 궤도틀림 추정을 위한 반복 최소자승법의 적용 (Application of Recursive Least Squares Method to Estimate Rail Irregularities from an Inertial Measurement Unit on a Bogie)

  • 이준석;최성훈;김상수;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.427-434
    • /
    • 2011
  • This paper is focused on application of recursive least squares method to estimate rail irregularities from the acceleration measurement on an axle-box or a bogie for the rail condition monitoring with in-service high-speed trains. Generally, the rail condition was monitored by a special railway inspection vehicle but the monitoring method needs an expensive measurement system. A monitoring method using accelerometers on an axle-box or a bogie was already proposed in the previous study, and the displacement was successfully estimated from the acceleration data by using Kalman and frequency selective band-pass filters. However, it was found that the displacement included not only the rail irregularities but also phase delay of the applied filters, and effect of suspension of the bogie and conicity of the wheel. To identify the rail irregularities from the estimated displacement, a compensation filter method is proposed. The compensation filters are derived by using recursive least squares method with the estimated displacement as input and the measured rail irregularity as output. The estimated rail irregularities are compared with the true rail irregularity data from the rail inspection system. From the comparison, the proposed method is a useful tool for the measurement of lateral and vertical rail irregularity.

  • PDF

Active Control of a High-Speed Pantograph using LQ-Servo Controller

  • Shin, Seung-Kwon;Song, Young-Soo;Eum, Ki-Young;Koo, Dong-Hoe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1173-1177
    • /
    • 2004
  • The high investment is necessary for the new high speed lines. So the KRRI was interested in the possibility of upgrading the existing line in order to speed up the train in the conventional lines. The tilting train system has been developed because the reconstruction of railway for the cant compensation costs very high. The purpose of the tilting system is to compensate the centrifugal acceleration in order to reduce the lateral acceleration of the passenger at high speed on the curves.The pantograph of the tilting train is indispensable in order to supply the electrification equipments with power in safe. The dynamic interaction between the pantograph and the overhead catenary system causes the variation of the contact force and the contact force variation can cause contact losses, arcing and sparking. If the spark happens between the pantograph and the overhead catenary system, the EMI(electro magnetic interface) and noises may occur. After all, the quality of current collection is deteriorated. This paper deals with the active control of pantograph and presents the LQ-servo controller to reduce the contact force variation.

  • PDF

경사진 노면에서의 차량의 종 속도 추정 (Vehicle Longitudinal Velocity Estimation on Inclined Road)

  • 이상엽;김인근;이동훈;허건수
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.14-19
    • /
    • 2012
  • On-line and real-time information of the longitudinal velocity is the essential factor for the Advanced Vehicle Control Systems such as ABS(Anti-lock Brake System), TCS(Traction Control System), ESC (Electronic Stability Control) etc. However, the longitudinal velocity cannot be easily measured or calculated during braking maneuvering. A new algorithm is presented for the estimation of the longitudinal velocity with the measurements of the vehicle longitudinal/lateral acceleration, steering angle and yaw rate. The algorithm is designed utilizing the Extended Kalman Filter based on the 3 degree of freedom vehicle model. In order to compensate for the biased sensor signal on the inclined road, the inclined angle is also estimated. The performance of the proposed estimation algorithm is evaluated in field tests.

차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계 (Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body)

  • 박철희;오진우
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

주기 조절을 이용한 고층 건물의 풍응답 조절 설계 (Wind Induced Vibration Design for High-rise buildings through Control of Natural Period)

  • 김지은;차성희;서지현;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.43-51
    • /
    • 2004
  • As the slenderness ratio of a high-rise building increases, the lateral load resisting system for the building is more often determined by serviceability design criteria. In serviceability design, the maximum drift and the level of vibration are controlled not to exceed the design criteria. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. Development of practical design method for wind induced vibration is required. Generally, wind induced acceleration responses are depending on several variables such as the weight density of a building, damping ratio, the natural period, and etc.. All parameters except the natural period or frequency are usually out of reach for structural engineers, then the wind acceleration response may be proportioned to the natural period. Therefore, in this paper, a wind induced vibration design method based on frequency control technique for high-rise is proposed. The method is applied to vibration design of a 25-story office building for performance evaluation.

  • PDF

국내 지진규모를 고려한 케이슨 안벽의 지진시 수평변위 특성에 관한 연구 (A Study on the Seismically-induced Lateral Displacements of Caisson Quay Walls Considering Seismic Magnitude in Korea)

  • 박근보;차승훈;최재순;김수일
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.83-90
    • /
    • 2002
  • There are few earthquake records in Korea and the Japanese or American representative earthquake records have been generally used in the seismic design. In this study, some earthquake records which the range of earthquake magnitudes varies from 5.3 to 7.9 were collected and analyzed to assess which record can rationally reflect Korean seismic characteristics. In this assessment, each seismic energy and acceleration spectrum were analyzed with the unified maximum ground acceleration. Several numerical analyses on Korean representative caisson structures were also carried out to compare each dynamic displacement. In these numerical analyses, soil conditions and the dimension of structure such as height and width were changed. Through this assessment, it is found that the compatible earthquake magnitude in Korea is lower than 7. From the result of numerical analyses, it is shown that horizontal dynamic displacements corresponding to earthquake magnitudes over than 7 are quite larger than those below earthquake magnitude 7. Based on this study, it is necessary that Korean seismic design guideline will refer earthquake magnitude criteria for the construction of the economical aseismic structure.

  • PDF

Dynamic Behaviors of Skewed Bridge with PSC Girders Wrapped by Steel Plate

  • Rhee, In-Kyu;Kim, Lee-Hyeon;Kim, Hyun-Min;Lee, Joo-Beom
    • International Journal of Railway
    • /
    • 제3권3호
    • /
    • pp.83-89
    • /
    • 2010
  • This paper attempts to extract the fundamental dynamic properties, i.e. natural frequencies, damping ratios of the 48 m-long, $20^{\circ}$ skewed real bridge with PSC girders wrapped by a steel plate. The forced vibration test is achieved by mounting 12 Hz-capacity of artificial oscillator on the top of bridge deck. The acceleration histories at the 9 different locations of deck surface are recorded using accelerometors. From this full-scaled vibration test, the two possible resonance frequencies are detected at 2.38 Hz and 9.86 Hz of the skewed bridge deck by sweeping a beating frequency up to 12 Hz. The absolute acceleration/energy exhibits much higher in case of higher-order twist mode, 9.86 Hz due to the skewness of bridge deck which leads asymmetric situation of vibration. This implies the test bridge is under swinging vertically in fundamental flexure mode while the bridge is also flickered up and down laterally at 9.86 Hz. This is probably by asymmetric geometry of skewed deck. A detailed 3D beam-shell bridge models using finite elements are performed under a series of train loads for modal dynamic analyses. Thereby, the effect of skewness is examined to clarify the lateral flickering caused by asymmetrical geometry of bridge deck.

  • PDF

항만구조물의 액상화 대책을 위한 진동대 실험에 대한 연구 (ShakingTest of Waterfront Structure for Liquefaction Counter measure)

  • 박종관
    • 한국지반공학회지:지반
    • /
    • 제8권3호
    • /
    • pp.37-50
    • /
    • 1992
  • 지진으로 인한 액상화현상은 토목구조물에 막대한 피해를 주고 있다. 본 연구에서는 액상화 현상에 대란 대책을 연구할 목적으로 모형 항만구조물을 대상으로 하여 진동대 실험을 실시하였다. 액상화현상으로 항만구조물에 발생하는 과잉변형을 방지하기 위하여 보강구간을 설치하고 그 효과에 대하여 검토하였다. 제방, 이중 널말뚝벽과 앵커 구조물의 진동대 실험을 통하여, 액상화 지반의 유동변형에 대한 특성과 보강범위에 대한 정량적 자료를 얻었다. 항만구조물을 보호하기 위한 보강구간의 범위는 진동가속도의 크기에 따라 다르다. 실험을 통하여 얻어진 구조물의 과잉변형을 보강구간의 범위와 진동가속도의 크기에 따라 나타내었다.

  • PDF