• Title/Summary/Keyword: lateral/vertical force

Search Result 221, Processing Time 0.018 seconds

Three dimensional photoelastic study on the initial stress distributions of alveolar bone when retracted by lingual K-loop archwire (Lingual K-loop archwire를 이용한 발치공간 폐쇄시 초기응력 분포에 대한 3차원 광탄성학적 연구)

  • Byun, Bo-Ram;Kim, Sik-Sung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.32 no.5 s.94
    • /
    • pp.343-353
    • /
    • 2002
  • This study was designed to investigate the stress distribution of alveolar bone in case of on masse retraction with lingual K-loop archwire using the 3-dimensional photoelastic stress analysis followed by stress freezing process. Lingual K-loop archwire which had loop in 15mm height was used and activated by retraction force of 350gm per each side. The results were as follows 1. Central incisor : As the closer side to crown, the larger tensile stress was distributed at both mesial and labial surfaces and the larger compressive stress was distributed at distal surface. As the closer side to root apex, the larger compressive stress was distributed at lingual surface. The compressive stress was distributed at root apex. 2. Lateral incisor : The tensile stress was distributed at the coronal side of mesial surface. The compressive stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at labial surface. The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of lingual surface. The compressive stress was distributed at root apex. 3. Canine The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of mesial surface. The tensile stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. The compressive stress was distributed at root apex. 4. Second premolar : The tensile stress was distributed at mesial surface. The compressive stress was distributed at coronal side and the tensile stress was distributed at apical side of distal surface. The compressive stress was distributed at coronal side of buccal surface. As the closer side to crown, the larger tensile stress was distributed at lingual surface. The compressive stress was distributed at root apex. 5. First molar . As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. No stress was distributed at buccal surface and palatal root apex. As the closer side to crown, the larger tensile stress was distributed at both lingual surfaces. The compressive stress was distributed a4 buccal root apexes. 6. Second molar The compressive stress was distributed at all root apexes. As the closer side to crown, the larger compressive stress was distributed at both mesial and lingual surfaces, and the larger tensile stress at both distal and buccal surfaces. Transverse bowing effect was observed in on-masse retraction with lingual K-loop archwire, however vertical towing effect was not. Rather, reverse vortical bowing effect was developed.