• Title/Summary/Keyword: late Pleistocene and Holocene

Search Result 24, Processing Time 0.031 seconds

Characteristics and Stratigraphy of Late Quaternary Sediments on a Macrotidal Mudflat Deposit of Namyang Bay, Western Coast of Korea

  • Lim, D. I.;Choi, J. Y.;Jung, H. S.
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.46-60
    • /
    • 2003
  • In Namyang Bay of western Korea, macrotidal-flat deposits are divisible into three late Quaternary units: Unit M1 of upper marine mud, Unit T1 of middle siderite-bearing terrestrial clay, and Unit M2 of lower marine mud. Unit M1 represents typical Holocene intertidal mudflat deposits, showing a coarsening-upward textural trend. It probably resulted from the continual retrogradation of tidal flat during the mid-to-late Holocene sea-level rise. Reddish brown-color Unit T1 consists of homogeneous clay with abundant freshwater siderite grains and plant remains. Unit T1 is clearly separated from the overlying Unit M1 by a sharp lithologic boundary. Radiocarbon age, siderite grains and lithologic features indicate that Unit T1 is originated from freshwater bog or swamp deposition infilling the localized topographic lows during the early Holocene age. Overlain unconformably by early Holocene swamp clay, Unit M2 is orange to yellow in color and mottled, suggesting significant degree of weathering during the sea-level lowstand. Such subaerial oxidation is confirmed in the vertical profiles of geotechnical properties, clay mineral assemblages and magnetic susceptibility. Unit M2 appears to be correlated with the upper part of the late Pleistocene tidal deposits developed along the western Korean coast. The sedimentary succession of the Namyang-Bay tidal-flat deposit provides stratigraphic information for the Holocene-late Pleistocene unconformity and also permits an assessment of the preservation potential of the late Pleistocene marginal marine deposit along the western coast of Korea.

Late Quaternary (Late Pleistocene and Holocene) Stratigraphy and Unconformity in the Kimpo Tidal Deposits, Kyunggi Bay, West Coast of Korea (경기만 김포 조간대 지층의 제 4기 후기 층서)

  • 박용안;최경식;도성재;오재호
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 1999
  • Three deep borings to obtain vertical continuous samples including weathered basement soils (KP-1, KP-2 and KP-3) were carried out in the reclaimed Kimpo tidal flat with purposes to establish late Quaternary stratigraphy. On the basis of detailed observations and descriptions on color, sedimentary structure and textural composition of cored sediments, four lithostratigraphic units are classified. From the stratigraphic top to bottom, they are Holocene tidal sand and muddy deposit (Unit I), early Holocene freshwater marsh muddy deposit (Unit II), late Pleistocene tidal sand and muddy deposit (Unit III) and late Pleistocene basal fluvial gravel deposit (Unit IV). In particular, Unit III is divided into two parts: the upper part-weathered and cryoturbated part during the Last Glacial Maximum (Unit III-a) and the lower part-unweathered tidal sand and muddy deposit (Unit III-b).

  • PDF

Characteristic Nature of the Unconformity between Holocene and Late Pleistocene in the Tidal Deposits along the Western Coast of Korea

  • Park, Yong-Ahn
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.13-14
    • /
    • 2003
  • It is generally well known that Quaternary is characteristic geologically in terms of glacial and interglacial repeats and their associated unconformity formation. This paper deals with the first finding of the characteristic and significant meaningful unconformity between Holocene and late Pleistocene, which implies submergence and emergence of the tidal sedimentary basin along the western coastal zone of Korea during interglacial stage(IOS-5e) and glacial time(IOS-2). The stratigraphy of intertidal deposits in the Haenam Bay, western coast of Korea shows two depositional sequence units (Unit I of Holocene and Unit II of late Pleistocene) bounded by an erosional surface of disconformity. The disconformity is related to the latest Pleistocene sea-level lowstands (probably during the LGM). The Unit II is interpreted as intertidal deposit showing tidal sedimentary structures and crab burrow ichnology and has two parts (the upper part and the lower part) showing different lithology and character. The upper part of Unit II shows characteristic subaerial exposure features (emergence) and its related lithology. Such subaerially exposed upper part (more or less 4m to 5m in thickness) is characterized by yellow-brownish sediment color, cryoturbat-ed structure, crab burrow ichnofacies and high value of shear strength. Geochemical and clay mineral analyses of the upper part sediments also indicate subaerial exposure and weathering. In particular, very high value of magnetic susceptibility of the upper part in comparison to that of the lower part is interpreted as pedogenetic weathering during the subaerial exposure period.

  • PDF

Difference of Clay Mineral Compositions between Holocene and Late Pleistocene Tidal Deposits in the Haenam Bay, Korea: Evidence of Subaerial Exposure and Weathering

  • Park, Yong-Ahn;Choi, Jin-Yong;Lim, Dhong-Il
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.138-144
    • /
    • 1997
  • The tidal deposits in the Haenam Bay, southwest coast of Korea, are stratigraphically divided at least into two units (Unit I of Holocene and Unit II of late Pleistocene) based on the obtained vibracoring sediments. In Unit I, clay minerals of illite, chlorite, kaolinite and smectite are observed as similar to those of the other modern tidal deposits. Of note, however, is the absence of smectite and chlorite in the upper part of Unit II compared with the clay mineral compositions of Unit I. It is concluded that the subaerial weathering and diagenetic effects rather than depositional processes are responsible for the positive and characteristic differences in clay mineral compositions between two units, that is, the upper part of Unit II was exposed subaerially and weathered diagenetically prior to the late Holocene transgression. Therefore, the bounding relationship between Unit I and Unit II is unconformable.

  • PDF

The Changes of Sea Level and Climate during the Late Pleistocene and Holocene in the Yellow Sea Region (한국 황해(서해)의 프라이스토세 후기 및 홀로세(현세)의 해수면 변동과 기후)

  • 박용안
    • The Korean Journal of Quaternary Research
    • /
    • v.6 no.1
    • /
    • pp.13-19
    • /
    • 1992
  • To understand the natural environments and human cultures in the Yellow Sea regions, this paper deals especially the climate and sea level fluctuation in the Yellow Sea and its surrounding region in the period of late Pleistocene (125, 000 yr BP) to Holocene. During the glacial maximum (about 15, 000 yr BP to 18, 000 yr BP), the climate might be cold and arid. These arid climate in the Yellow Sea region did make desertization possible. Possible human culture exchanges between China, Korea and Japan might be carried in a easy way, because the entire basin of the Yellow Sea was exposed as land. Paleoshorelines of the Yellow Sea in the period of 10, 000 yr BP, 9, 000 ry BP and 6, 000 yr BP are presented and sea level fluctuation curve from 37, 000 yr BP (late Pleistocene) to present (late Holocene), for the first time, is presented based on a careful reconsideration of existing old data and recent new data.

  • PDF

Late Pleistocene Unconformity in Tidal-Flat Deposit of Gyeonggi Bay, Western Coast of Korea (한국 서해 경기만 조간대 퇴적층의 후기 플라이스토세 부정합)

  • Jung, Hoi-Soo;Yoo, Hai-Soo;Seo, Jung-Mo;Paeng, Woo-Hyun;Lim, Dhong-Il
    • Journal of the Korean earth science society
    • /
    • v.24 no.8
    • /
    • pp.657-667
    • /
    • 2003
  • Deep-drilled core sampling and high-resolution seismic survey were carried out to identify a Holocene-late Pleistocene boundary in Gyeonggi Bay, western coast of Korea. Analysis of core sections revealed the existence of an oxidized and semi-consolidated sediment layer, Iying immediately below a Holocene horizon (Unit I) and being developed at the top of a late Pleistocene deposit (Unit II). The oxidized sedimentary layer (uppermost part of Unit II) is characterized by semi-consolidated, yellowish sediments showing signs of desiccation and alteration such as high N value, low water content, periglacial cryogenic structure, depletion of smectite, and high geochemical weathering index (Ba/Sr ratio). This feature, together with radiocarbon ages, suggests that the layer has formed as a result of prolonged subaerial exposure of Unit II sediments during the late Wisconsin sea-level lowstand, producing a regional unconformity. Such unconformitic-bounding surface corresponds to a prominent near-surface reflector (R), which is observed in seismic profiles obtained across the drilled-core sections in the study area. Consequently, the buried oxidized-sedimentary layer associated with the seismic reflector possibly plays a key horizon for the understanding of late Quaternary environmental changes as well as evidence of the emergence of the Yellow Sea shelf during the late Wisconsin sea-level lowstand.

Sedimentary Environments of Pre-Holocene Kanweoldo Deposit in Cheonsu Bay, Western Coast of Korea (한국 서해 천수만 선현세 간월도 퇴적층의 퇴적환경)

  • Jung, Hoi-Soo;Um, In-Kwon;Lim, Dong-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.1
    • /
    • pp.32-42
    • /
    • 2002
  • The late Quaternary deposit of Cheonsu Bay, up to 20 m in thickness above the Jurassic granite basement, consists of two sedimentary units: an upper Holocene mud and sandy mud deposit (Unit M1), and a lower late Pleistocene sand and mud deposit (Unit M2; 'Kanweoldo Deposit&apos). Unit M1 is a typical Holocene tidal-flat deposit of Cheonsu Bay, showing a coarsening upward, retrogradational facies trend. This retrograding facies trend is probably due to a relative low sedimentation rate during Holocene transgression. Overlain unconformably by Unit M1, Unit M2 deposit reaches up to 14 m in thickness and is mainly composed of muddy sediment with yellow to gray color. This unit is characterized by a variety of tide-influenced signatures such as rhythmic bedding, flaser bedding, crab burrow fossil, marine dinoflagellate assemblage and authigenic glauconite mineral, indicating very similar depositional environment to those of Unit M1 deposit. It suggests that Unit M2 was probably accumulated under the tidal-flat environment during a pre-Holocene sea-level highstand. In particular, the uppermost 3-4 m of Unit M2 appears to have undergone subaerial exposure and subsequent weathering during the sea-level lowstand after deposition. Therefore, stratigraphic unconformity between Holocene and late Pleistocene sediments is highlighted by the desiccated and weathered surface of Unit M2.

Late Quaternary Stratigraphy of the Tidal Deposits In the Hampyung Bay, southwest coast of Korea (한국 서남해 함평만 조간대 퇴적층의 제4기 후기 층서 연구)

  • Park, Yong-Ahn;Lim, Dhong-Il;Choi, Jin-Yong;Lee, Young-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.138-150
    • /
    • 1997
  • The late Quaternary stratigraphy of the tidal deposits in the Hampyung Bay, southwestern coast of Korea comprises 1) Unit III (nonmarine fluvial coarse-grained sediments), 2) Unit II (late Pleistocene tidal deposits), and 3) Unit I (late Holocene fine-grained tidal deposits) in ascending order. The basements of the Hampyung Bay is composed of granitic rocks and basic dyke rocks. These three units are of unconformally bounded sedimentary sequences. The sequence boundary between Unit I and Unit II, in particular, seems to be significant suggesting erosional surface and exposed to the air under the cold climate during the LGM. The uppermost stratigraphic sequence (Unit I) is a common tidal deposit formed under the transgression to highstand sea-level during the middle to late Holocene.

  • PDF

Lakes and Palaeolakes in Mongolia and Northwestern China

  • Michael, Walther;Bernd, Wunnemann;Altangerel, Tshimeksaichan
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.17-17
    • /
    • 2004
  • The Pleistocene lake level and climate development is described by proxies from sediment, pollen and diatom records in Mongolia and Northwest-China. It could be proved that higher lake levels seem to have existed during the old and mid Pleistocene period interpreted on the base of geomorphological and sedimentological reords. They are dated in a relativ time scale. The lake basins are filled up to 300 m by limnic deposits, which foused on a constant water balance of more than 700.000 years. Late Glacial and Holocene lake level fluctuations and climate changes can be proved by biostratigraphic records pointing to dry and wet phases. Only for the youngest history desiccation of some lakes are related to human impact.

  • PDF