• Title/Summary/Keyword: late Holocene

Search Result 87, Processing Time 0.028 seconds

Sedimentary Environments of Pre-Holocene Kanweoldo Deposit in Cheonsu Bay, Western Coast of Korea (한국 서해 천수만 선현세 간월도 퇴적층의 퇴적환경)

  • Jung, Hoi-Soo;Um, In-Kwon;Lim, Dong-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.1
    • /
    • pp.32-42
    • /
    • 2002
  • The late Quaternary deposit of Cheonsu Bay, up to 20 m in thickness above the Jurassic granite basement, consists of two sedimentary units: an upper Holocene mud and sandy mud deposit (Unit M1), and a lower late Pleistocene sand and mud deposit (Unit M2; 'Kanweoldo Deposit&apos). Unit M1 is a typical Holocene tidal-flat deposit of Cheonsu Bay, showing a coarsening upward, retrogradational facies trend. This retrograding facies trend is probably due to a relative low sedimentation rate during Holocene transgression. Overlain unconformably by Unit M1, Unit M2 deposit reaches up to 14 m in thickness and is mainly composed of muddy sediment with yellow to gray color. This unit is characterized by a variety of tide-influenced signatures such as rhythmic bedding, flaser bedding, crab burrow fossil, marine dinoflagellate assemblage and authigenic glauconite mineral, indicating very similar depositional environment to those of Unit M1 deposit. It suggests that Unit M2 was probably accumulated under the tidal-flat environment during a pre-Holocene sea-level highstand. In particular, the uppermost 3-4 m of Unit M2 appears to have undergone subaerial exposure and subsequent weathering during the sea-level lowstand after deposition. Therefore, stratigraphic unconformity between Holocene and late Pleistocene sediments is highlighted by the desiccated and weathered surface of Unit M2.

The Changes of Sea Level and Climate during the Late Pleistocene and Holocene in the Yellow Sea Region (한국 황해(서해)의 프라이스토세 후기 및 홀로세(현세)의 해수면 변동과 기후)

  • 박용안
    • The Korean Journal of Quaternary Research
    • /
    • v.6 no.1
    • /
    • pp.13-19
    • /
    • 1992
  • To understand the natural environments and human cultures in the Yellow Sea regions, this paper deals especially the climate and sea level fluctuation in the Yellow Sea and its surrounding region in the period of late Pleistocene (125, 000 yr BP) to Holocene. During the glacial maximum (about 15, 000 yr BP to 18, 000 yr BP), the climate might be cold and arid. These arid climate in the Yellow Sea region did make desertization possible. Possible human culture exchanges between China, Korea and Japan might be carried in a easy way, because the entire basin of the Yellow Sea was exposed as land. Paleoshorelines of the Yellow Sea in the period of 10, 000 yr BP, 9, 000 ry BP and 6, 000 yr BP are presented and sea level fluctuation curve from 37, 000 yr BP (late Pleistocene) to present (late Holocene), for the first time, is presented based on a careful reconsideration of existing old data and recent new data.

  • PDF

Humus Analysis for the Geomorphic Development and Climatic Environment Change of Alluvial Plain in Hampyeongcheon Basin during the Late Holocene (휴무스분석을 이용한 함평천 유역의 홀로세 후기 충적평야의 지형발달과 기후환경변화)

  • Jung, Hea-Kyung;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.33 no.4
    • /
    • pp.320-328
    • /
    • 2012
  • To investigate geomorphic development of alluvial plains and climatic environment change during the late Holocene carbon dating, soil organic carbon analysis and humus analysis of sediments from alluvial plain of Hampyeongcheon basin were performed. The lowest peat layer was formed under warm and humid climates, which is considered to correspond to the Atlantic period in the Holocene. Yellowish brown sandy clay layer was deposited in the natural levee, which we think were deposited in the generally warm and dry climates. The carbon dating age is 1,879-1,532 BC, and this period correspond to the Sub-boreal period in the Holocene. Light brown clay layer is assumed to have been deposited in transitional environment from the natural levee to the back marsh. The climatic environment was warm and humid, which is considered as transitional period from the Sub-boreal to the Sub-Atlantic in the Holocene. Light yellowish brown and light brown clay layer of the upper part are regarded as sediments of the back marsh. Light yellowish brown clay layer was deposited in the cold and dry climates, which is considered to correspond to the Sub-Atlantic period in the Holocene. Light brown clay layer was deposited in the warm and dry climates. The carbon dating age is 211-427 AD, this period corresponds to the Post Roman Warm Period in the Holocene.

The Environmental Change and Geomorphic Development of Unsan Alluvial Plain in Kangreung City during the Late Holocene (강릉 운산충적평야의 홀로세 후기의 환경변화와 지형발달)

  • 윤순옥
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.2
    • /
    • pp.127-142
    • /
    • 1998
  • Unsan alluvial plain is the backmarsh of Seomseokcheon which is a river originated from Chilseongdae(954m) on Mts Taeback, flowing into Donghae in southern Kangreung City, Kangwon Province. The vegetation change, geomorphic develoopment and depositional environment during the late Holocene have been investigated, using the methods such as boring, pollen analysis and radiocarbon dating. Because the deposits fo the study area are mainly consisted of peat and paety sand, they contained many pollen fossils. The peat layer has been sedimented since the high sea-level periods, 3,200 y. BP, and the records of vegetation change until now has well preserved here. According to archeological researches and the results of pollen analysis in east coast of Korea, it is supposed that the prehistoric rice farming in this area has begun since ca. 1,800 y. BP.

  • PDF

The Change of Vegetation Environment since middle-late Holocene in the lower reaches of Taehwa River, Taehwa-dong, Ulsan-si, Korea (울산 태화강 하류 태화동 홀로세 중·후기 식생환경 변화)

  • Kim, HyeRyung;Yoon, Soon-Ock;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 2016
  • This study analyzed pollen compositions in archaeological site on alluvial plain of Taehwa River, Taehwa-dong, Ulsan-si vegetational and environmental change during 6,200~3,000 yr BP. The results consist upward of Pollen Zone I (Inner Bay environment), Pollen Zone II (Quercus-Alnus stage) and Pollen Zone III (Alnus stage). The pollen grains of Fagopyrum and reddish gray silty horizon including artifacts of the Bronze Age suggest that there was cultivation on dry-field around the study site, although it is not sure that there was paddy-field cultivation.

Holocene Sea Level Changes in the Eastern Yellow Sea: A Brief Review using Proxy Records and Measurement Data (황해 동부 연안의 홀로세 해수면 변화: 대리기록과 관측자료를 통한 재검토)

  • Lee, Eunil;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.520-532
    • /
    • 2015
  • In order to understand the Holocene sea level changes in the eastern Yellow Sea, the west coast of Korea, and to compare the rates of sea level rise in each period of time, the geological proxy records for pre-instrumental era and measurement data for the present day were combined and analysed. The sea level in the Yellow Sea rose fast with a rate of about 10 mm/yr during the early Holocene, and decelerated down to 1 mm/yr since the mid to late Holocene. The rising rates of sea level in the 20th century were slightly higher than those in the late Holocene. The present-day rates of sea level rise, known as the 'rapid' rise, are in fact much lower or similar, compared to the early to mid Holocene sea levels in the study area. Recent tide-gauge data show that sea level rise in the eastern Yellow Sea has been accelerating toward the 21st century. These rising trends coincide well with global rising patterns in sea level. Additionally, the present-day rising trends of sea level in this study are correlated with increased rates of carbon dioxide concentrations and sea surface temperatures, further indicating a signal to global warming associated with the human effect. Thus, the sea level changes induced by current global warming observed in the eastern Yellow Sea and world's oceans can be considered as 'Anthropocene' sea level changes. The changes in sea level are based on instrumental measurements such as tide-gauges and satellite altimetry, meaning the instrumental era. The Holocene changes in sea level can thus be reconstructed from geological proxy records, whereas the Anthropocene sea-level changes can be solely based on instrumental measurements.

The Holocene tidal sedimentary changes in Mosan Bay Estuary, Korea (홀로세 충남 모산만 하구역내 간석지의 퇴적과정)

  • Shin, Young Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.37-51
    • /
    • 2011
  • Geomorphic changes and sedimentary changes are investigated by sediment analysis from estuarine tidal flat, Mosan Bay Estuary, which is a tide-dominated and rias estuary. Sediments separatedly deposited during the early Holocene and the late Holocene. There are unconformities between the early Holocene sediment unit and the late Holocene sediment unit. Developments of these unconformities were related with fluctuated sea level change during the mid Holocene. Three deposit zones are spatially classified, which are named "intermittent tide channel deposit zone"(A1, B1, D3), "flood-dominated deposit zone"(A3, B3, C1, C3), and "fluvial sediment deposit zone"(A2, B2). This classification is explained by three main effects; laterally restricted migration of a tidal channel, diffract flood effect and settling lag effect, and fluvial induced reworking. These effects are deserved as main factors which have formed estuarine geomorphology in tidedominated and rias estuary. This study suggests research directions in reconstructing estuarine geomorphic and sedimentary change in west coast of Korea. Furthermore, it gives useful data for making a "land-ocean interaction" model for west coast of Korea.

Late Quaternary Stratigraphy and Depositional Environment of the Yeongsan River Estuary, Southwestern Korea (영산강 하구의 제4기 후기 층서 및 고환경)

  • 남욱현;김주용;양동윤;홍세선;봉필윤;이윤수;유강민;염종권
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.545-556
    • /
    • 2003
  • Detailed interdisciplinary investigations demonstrate that the Yeongsan River estuarine-filled sediments clearly record important paleoenvironmental changes during the Last Glacial and Holocene. The sediments from 18.9 m(20.5∼l.6m in depth) long core MW-1 are differentiated by changes in sedimentary textures and palynomorph assemblages. Chronology was provided by AMS$^{14}$C dating and regional pollen correlation. Three paleoenvironrnental phases are recognized: (1) The Last Glacial deposits consist mainly of fluvial sediments and paleosols, experienced deposition alternating with pedogenesis. The appearance of the paleosols suggests that the paleoclimate might be cold and humid. (2) The early and middle Holocene phase started abruptly in response to the rapid global climatic warming. and is characterized by abundant marine palynomorphs. (3) The late Holocene is marked by more cool conditions. The paleoenvironmental changes recorded in the sediments coincide not only with local but also with broad-scale, probably global climate changes.

External mechanisms driving ecosystem changes in a coastal wetland, the Mississippi Delta, USA

  • Ryu, Junghyung;Liu, Kam-biu;McCloskey, Terrence A.;Yun, Sang-Leen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.85-85
    • /
    • 2022
  • The world's most extensive and active deltas, Louisiana's wetlands, are deteriorating rapidly due to multiple stressors such as the discharge of the Mississippi River, sea-level rise, and coastal retreat, the substantial but spatially and temporally variable impacts. However, the ecological and anthropogenic histories, the mode of environmental changes on a multi-millennial timescale have not been thoroughly documented. This study, a palynology-based multiproxy analysis, investigates hydrological, geological, geochemical, and anthropogenic impacts on southern Louisiana wetlands and a variety of external forcing agents influencing ecological succession. Sediment cores extracted from a small pond on a mangrove-dominate island near Port Fourchon, Louisiana, USA yielded a 4,000-year record. The site has been transformed from freshwater to saline water environments, to a mangrove dominant island over the late Holocene. The multivariate principal component analysis identified the relative strength of external drivers responsible for each ecological shift. The Mississippi River delta cycle (lobe switching) was the dominant driver of ecosystem changes during the late Holocene, while relative sea-level rise, tropical cyclones, climate, and anthropogenic effects have been the main drivers late in the site's history.

  • PDF

Vertical Variations of Benthic Foraminiferal Assemblages in Core Sediments on Yeoja Bay, Southern Coast of Korea: Implications for Late Holocene Sea-Level Change (여자만 코어 퇴적물에서 나타나는 저서성 유공충 군집 변화: 홀로세 후기 해수면 변화 의의)

  • Jang, Seok-Hoon;Jeong, Da-Un;Lee, Yeon-Gyu
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.409-426
    • /
    • 2009
  • In the four sedimentary cores from Yeoja Bay, the analyses of grain size, benthic foraminiferal species compositions, assemblages and statistics were carried out to investigate the effects of late Holocene sea-level change on benthic foraminifera. The core sediments were mainly composed of fine-grained silt and clay. The benthic foraminifera were classified into 27 species of 16 genera, 30 species of 21 genera, 50 species of 29 genera and 52 species of 29 genera in Core YC-1 to 4, respectively. In the result of cluster analysis, it seemed that Group 1 (Core YC-1 and 2) of representative A. beccarii assemblages was deposited in upper bay environment and Group 2 (Core YC-3 and 4) of representative E. clavatum-A. beccarii assemblages was deposited in inner bay environment affected by offshore water. In the result of species composition analysis, the production frequency of A. beccarii was gradually decreased from low layer to upper layer, whereas production frequency of E. clavatum and P.F./T.F. was gradually increased to upward. These change patterns appeared in benthic and planktonic foraminifera seemed to reflect the late Holocene sea-level rise in Yeoja Bay.