• Title/Summary/Keyword: laser-welding

Search Result 1,225, Processing Time 0.03 seconds

Weldability of STS316L for LNG Carrier by Fiber Laser (파이버 레이저를 이용한 LNG선용 STS316L의 용접특성)

  • Kim, Jong-Do;Lee, Jae-Beom;Lee, Chang-Je;Song, Moo-Keun;Nam, Gi-Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1061-1068
    • /
    • 2012
  • These days, world wide interest about global warming and environmental pollution and exhausting fossil fuel which have been main energy source in all around the world. So many country have tried to find out the solution by investing new & renewable and clean energy. Therefore LNG have been widely used as a substitution of fossil fuel and clean energy that emits less pollutant like SOx, NOx. Therefore LNG consumption has been quickly raised and LNG carriers have been getting larger for decades. In this study, high power fiber laser was used for welding of stainless steel for LNG carrier to increase its productivity. Used material was STS316L which has low carbon less than 0.03% and its thickness was 8 mm. We carried out bead, lap and butt welding by using the fiber laser which has maximum power up to 5kW. As a result, we could find out that lap and butt joint was possible at welding speed of 2.0m/min and 3.0m/min respectively.

Stress Distribution around Laser-Welded Cutting Wheels Using a Spherical Indentation (구형압입을 이용한 레이저 용접된 절단 휠의 잔류응력 분포 측정)

  • Lee, Yun-Hee;Lee, Wan-Kyu;Jeong, In-Hyeon;Nahm, Seung-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.125-130
    • /
    • 2008
  • A spherical indentation has been proposed as a nondestructive method of measuring local residual stress field in laser-voided joints. The apparent yield strengths interpreted from the spherical indentation data of as-welded cutting wheel were compared with the intrinsic yield strengths measured at nearly equivalent locations in annealed wheel. Their difference along the distance from the welding line is welding stress distribution because the intrinsic yield strength is invariant regardless of the elastic residual stress. The spherical indentations show that the laser-welded diamond cutting wheel displays a 10 min-wide distribution of the welding residual stress and has peak compressive and tensile stresses in the shank and tip regions, respectively.

A Study on the Formation of Imperfections in CW $CO_2$Laser Weld of Diamond Saw Blade

  • Shin, M.;Lee, C.;Kim, T.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.21-24
    • /
    • 2002
  • The main purpose of this study was to investigate the formation mechanisms of imperfections such as irregular humps, outer cavity and inner cavity in the laser fusion zone of diamond saw blade. Laser beam welding was conducted to join two parts of blade; mild steel shank and Fe-Co-Ni sintered tip. The variables were beam power and travel speed. The microstructure and elements distributions of specimens were analyzed with SEM, AES, EPMA and so on. It was found that these imperfections were responded to heat input. Irregular humps were reduced in 10.4∼l7.6kJ/m heat input range. However there were no clear evidences, which could explain the relations between humps formation and heat input. The number of outer cavity and inner cavity decreased as heat input was increased. Considering both possible defects formations mechanisms, it could be thought that outer cavity was caused by insufficient refill of keyhole, which was from rapid solidification of molten metal and fast molten metal flow to the rear keyhole wall at low heat input. More inner cavities were found near the interface of the fusion zone and sintered segment and in the bottom of the fusion zone. Inner cavity was mainly formed in the upper fusion zone at high heat input whereas was in the bottom at low heat input. Inner cavity was from trapping of coarsened preexist pores in the sintered tip and metal vapor due to rapid solidification of molten metal before the bubbles escaped.

  • PDF

Friction Stir Welding of Ferritice Stainless Steel (페라이트계 스테인리스강의 마찰교반접합)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.14-17
    • /
    • 2014
  • Ferritic stainless steels are widely used in the construction industry and in exhaust manifolds due to their low cost and relatively superior stress corrosion cracking resistance and pitting corrosion resistance compared to austenite stainless steels. Ferritic stainless steels are currently welded by various welding process including gas tungsten arc welding (GTAW), electron resistance welding (ERW) and laser beam welding. However, when these stainless steels are welded by fusion welding, some problems occur in the fusion zone (FZ) and heat affected zone (HAZ). First, the ductility of the weld is reduced due to the grain growth in the FZ and HAZ. Second, as its HAZ is frequently sensitized during welding, corrosion resistance deteriorates in this region due to the Cr depletion zone. To prevent these problems, it is recommended that ferritic stainless steels be welded with a low heat input. In this study, recent researches in the view of friction stir welded ferritic stainless steels are briefly reviewed.

Material Processing by Laser (레이저를 이용한 재료가공)

  • 황경현;이성국
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.98-106
    • /
    • 1990
  • Lasers are used increasingly for specialized engineering applications such as drilling, profile cutting, welding and surface heat-treatment(hardening, alloying, annealing0 of metals and non-metals. The most important characteristics of lasers used for these materials-processing applications are reviewed, with special emphasis on the importance of the controlled heating process. In addition to these processes, some optical devices and supplementary equipment used in laser processing are introduced. Finally, some examples shows the wide variety of laser capability for substitution of traditional materials processing.

  • PDF