• Title/Summary/Keyword: laser vision system

Search Result 234, Processing Time 0.026 seconds

Dynamic torsional response measurement model using motion capture system

  • Park, Hyo Seon;Kim, Doyoung;Lim, Su Ah;Oh, Byung Kwan
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.679-694
    • /
    • 2017
  • The complexity, enlargement and irregularity of structures and multi-directional dynamic loads acting on the structures can lead to unexpected structural behavior, such as torsion. Continuous torsion of the structure causes unexpected changes in the structure's stress distribution, reduces the performance of the structural members, and shortens the structure's lifespan. Therefore, a method of monitoring the torsional behavior is required to ensure structural safety. Structural torsion typically occurs accompanied by displacement, but no model has yet been developed to measure this type of structural response. This research proposes a model for measuring dynamic torsional response of structure accompanied by displacement and for identifying the torsional modal parameter using vision-based displacement measurement equipment, a motion capture system (MCS). In the present model, dynamic torsional responses including pure rotation and translation displacements are measured and used to calculate the torsional angle and displacements. To apply the proposed model, vibration tests for a shear-type structure were performed. The torsional responses were obtained from measured dynamic displacements. The torsional angle and displacements obtained by the proposed model using MCS were compared with the torsional response measured using laser displacement sensors (LDSs), which have been widely used for displacement measurement. In addition, torsional modal parameters were obtained using the dynamic torsional angle and displacements obtained from the tests.

Reliability Evaluation System of Hot Plate for PR Baking (Hot Plate 신뢰성 시험.평가장비 개발)

  • 송준엽;송창규;노승국;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.566-569
    • /
    • 2001
  • Hot Plate is the major unit that it used to remove damp of wafer surface, to strength adhesion of photoresist(PR) and to bake coated PR in FAB process of semiconductor. It is necessary to guarantee the performance of Hot Plate(HP). Therefore, in this study designed and developed the reliability system of HP to measure and estimated thermal uniformity and flatness in temperature setting amplitude $0~250^{\circ}C$. We developed the techniques that measures and analyzes thermal uniformity using infrared thermal vision, and compensates measuring error of flatness using laser displacement sensor. For measuring flatness, we specially makes the measurement stage of 3 axes which adopts the precision encoder. The allowable error of measuring technique is less than thermal uniformity, $\pm 0.1^{\circ}C$ and flatness, $\pm 1mm$. It is expected that the developed system can measure from $\Phi$210(wafer 8") to $\Phi$356(wafer 12") and also can be used in performance test of the Cool Plate and industrial heater, etc.

  • PDF

Synchronization System of Robot-centered Information for Context Understanding (상황 이해를 위한 로봇 중심 정보 동기화 시스템)

  • Lim, G.H.;Lee, S.;Suh, I.H.;Kim, H.S.;Son, J.H.
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.933-934
    • /
    • 2006
  • High level perceptual tasks such as context understanding, SLAM and object recognition are essential for intelligent robot to provide services for human supports. Those intelligent robots often use camera sensor for vision information, sonar or laser sensor for range information, encoder for angular velocity of wheel and so on. The information is generated at different time intervals by the different H/W devices and S/W algorithms. The generation of high level information requires the specific mixture of low level information. And the information should be represented to be useful for robots to use in their ecological niche. In conventional robot systems, perceptual module requires the resource to use by tightly coupling whenever it is needed. So the resource and information cannot be easily shared and even could be invalid for the delayed information. In this paper, we propose a synchronization system of robot-centered information for context understanding. Our system represents information for the robot capacity and synchronizes the information that is asynchronously generated, where is employed the black-board architecture.

  • PDF

A Study on a Dual Electromagnetic Sensor System for Weld Seam Tracking of I-Butt Joints

  • Kim, J.-W.;Shin, J.-H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement sensor and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor was determined far the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 ㎜, and it was revealed that the system has excellent seam tracking ability for the I-butt joint of sheet metal.

  • PDF

A study on development of screen inspection system to detect damages, bowing, and foreign materials of nuclear fuel assembly for reactor in nuclear power plants (원전 연료집합체의 손상, 변형 및 이물질 검사시스템 개발에 관한 연구)

  • Park, Ki-Tae;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3617-3624
    • /
    • 2013
  • Screen inspection system applied vision and laser scan technology which detect foreign materials caused fuel rod to be damaged, and which inspect fuel rod damage, bowing, distortion and grid damages, was developed to secure reliability and reproductivity of inspection method for nuclear fuel assembly during outage. In further, datum of inspection results will be continuously monitored and given understand the pattern of bowing and distorting for fuel assembly in reactor. Understanding of the pattern will be key technical information to avoid grid demage might be happened during refueling outage and provides important data base for safe operation of nuclear power plant in Korea and world wide.

Object Width Measurement System Using Light Sectioning Method (광절단법을 이용한 물체 크기 측정 시스템)

  • Lee, Byeong-Ju;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.697-705
    • /
    • 2014
  • This paper presents a vision based object width measurement method and its application where the light sectioning method is employed. The target object for measurement is a tread, which is the most outside component of an automobile tire. The entire system applying the measurement method consists of two processes, i.e. a calibration process and a detection process. The calibration process is to identify the relationships between a camera plane and a laser plane, and to estimate a camera lens distortion parameters. As the process requires a test pattern, namely a jig, which is elaborately manufactured. In the detection process, first of all, the region that a laser light illuminates is extracted by applying an adaptive thresholding technique where the distribution of the pixel brightness is considered to decide the optimal threshold. Then, a thinning algorithm is applied to the region so that the ends and the shoulders of a tread are detected. Finally, the tread width and the shoulder width are computed using the homography and the distortion coefficients obtained by the calibration process.

Neurophysiology of the Sensory System and Clinical Applications (감각신경계의 신경생리와 임상적 이용)

  • Seo, Dae-Won
    • Annals of Clinical Neurophysiology
    • /
    • v.12 no.2
    • /
    • pp.35-46
    • /
    • 2010
  • Various electrophysiological tests have provided a large body of valuable information on neuronal responses to a presented stimulus. The special and general somatic sensory pathways are main targets of evoked potentials. Two types of evoked potentials, exogenous and endogenous, are commonly used. Exogenous evoked potentials of general and special somatic sensory systems will be reviewed. One of general somatic sensory functional pathways, proprioception, can be evaluated by general somatosensory evoked potentials with electrical stimulation on nerves. The special somatosensory functional pathways, including vision, and audition, can be evaluated by visual evoked potentials and auditory evoked potentials. Also laser-evoked potentials are newly developed for pain pathway, including lateral spinothalamic pathway, and vestibular myogenic evoked potentials for sacculocollic pathways. The evoked potentials of sensory system have maximal clinical utility in evaluating functional deficits along the sensory pathways. They are used for evaluating comatose patients, hysterical patients, premature infants, patients with suspected demyelinating diseases or neoplasms, and research. We discuss the neurophysiologic tests of sensory systems in views of practical points. The organized evaluation of sensory electrophysiologic tests can be helpful in detecting and estimating the abnormalities in neurological diseases.

Usage of Multiple Regression Analysis in Prediction System of Process Parameters for Arc Robot Welding (아크로봇 용접 공정변수 예측시스템에 다중회귀 분석법의 사용)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.871-877
    • /
    • 2008
  • It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. Howeve, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis for the prediction of process parameters was used as the research method. And, the results of the prediction method were compared and analyzed.

A Study of a Dual-Electromagnetic Sensor for Automatic Weld Seam Tracking (용접선 자동추적을 위한 이중 전자기센서의 개발에 관한 연구)

  • 신준호;김재응
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.70-75
    • /
    • 2000
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal butt-joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor were determined for the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 mm, and it was revealed that the system has excellent seam tracking ability for the butt-joint of sheet metal.

  • PDF

A Development of Object Shape Recognition Module using Laser Sensor (레이저 센서를 이용한 물체의 형상인식 모듈 개발)

  • Kwak, Sung-Hwan;Lee, Seung-Kyu;Lee, Seung-Jae;Kim, Young-Sik;Choi, Joong-Koung;Park, Mu-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.215-221
    • /
    • 2008
  • 무인 운반설비의 자동화 시스템 개발의 한 부분으로써 여러 Vision 센서 중 레이저 센서를 이용하여 작업공간상에 있는 판재류와 코일류의 경계부분을 인식한다. 다음으로 인식한 물체의 경계를 이용하여 3차원 공간상의 위치좌표를 추출하여 무인크레인에 이동해야할 위치좌표를 전달한다. 본 연구에서는, 첫 번째 레이저 센서를 이용한 물체의 경계 추출, 두 번째 레이저 센서의 z축 기울기 각 추출, 세 번째 인식한 경계를 이용하여 물체의 2차원 위치좌표 추출, 네 번째 레이저 센서를 이용하여 판재와 코일의 판별, 다섯 번째 물체 판별의 결과에 따른 판재와 코일의 3차원 위치좌표 추출을 목적으로 한다. 본 연구의 결과는 무인 운반설비의 자동화 시스템 개발에 상당한 도움이 될 것으로 기대된다.

  • PDF