• Title/Summary/Keyword: laser vision system

Search Result 234, Processing Time 0.036 seconds

Built-in CPVS(Concurrent Processing Vision System) of the marking and quality inspection (마킹과 품질검사의 동시 처리 비젼 시스템의 개발)

  • 박화규;채규열;구한서;이윤석;정창성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.397-399
    • /
    • 2001
  • 레이저를 이용한 마킹(marking) 시스템은 미러(mirror)를 움직이는 XY Scanner안 모터의 Thermal drift로 인한 오차와 laser 오류에 의해 마킹의 불량을 초래하게 된다. 따라서, 이 마킹 불량을 검사하기 위해 마킹 시스템에는 비젼(Vision)을 이용한 검사 장비가 탑재된다. 현재 웨이퍼 마킹기나 다른 마킹기의 비젼시스템은 후검사(post vision) 시스템을 도입하고 있다. 하지만, 후검사 시스템의 경우 마킹이 잘못되었을 때, 바로 마킹을 중지하지 못하고 적어도 한 단위 마킹(tray, 웨이퍼, Strip, PCB 등등)을 망치게 되고, 만일 마킹 대상물이 고가인 경우 상당한 금액의 손실을 가져오는 단점을 가지고 있다. 이러한 단절을 보완하기 위해 본 논문에서는 CPVS(Concurrent Processing Vision System)라는 시스템을 구현하였다. 이 시스템은 마킹과 마킹 품질검사를 동시에 병행함으로써 마킹이 잘못되었을 때 마킹을 중단하게 되어 더 이상의 손실이 나지 않게 하고 후처리 검사 시스템으로의 이송과정을 생략함으로써 processing time을 줄이고, 생산성을 높인다는 장점을 가지게 된다. 이 시스템의 구현은 Visual C++의 MFC 라이브러리를 사용한 MDI구조로 구현하였다.

  • PDF

Vision Sensor System for Weld Seam Tracking of I-Butt Joint with Height Variation (높이 변화가 있는 막대기 용접선 추적용 시각센서)

  • Kim Moo-Yeon;Kim Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2004
  • In this study, a visual sensor system which can detect I-butt weld joint with height variation and includes a seam tracking algorithm was investigated. Three-dimensional position of an object can be acquired by using the method of distance measurement, i.e., an optical trigonometry which results from the spatial relations between the camera, the object and the structured light by a visible laser. Effects of laser intensity and iris number for the image quality as well as object material were investigated for the optical system design. For the image processing, a region of interest is defined from the whole image and a line image of laser is drew by using the gray level difference in the image. From the drew laser line, the weld joint can be recognized in searching the biggest point position calculated from the central difference method. Through a series of welding experiments, a good tracking performance was confirmed under GMA welding.

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

Tele-operating System of Field Robot for Cultivation Management - Vision based Tele-operating System of Robotic Smart Farming for Fruit Harvesting and Cultivation Management

  • Ryuh, Youngsun;Noh, Kwang Mo;Park, Joon Gul
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Purposes: This study was to validate the Robotic Smart Work System that can provides better working conditions and high productivity in unstructured environments like bio-industry, based on a tele-operation system for fruit harvesting with low cost 3-D positioning system on the laboratory level. Methods: For the Robotic Smart Work System for fruit harvesting and cultivation management in agriculture, a vision based tele-operating system and 3-D position information are key elements. This study proposed Robotic Smart Farming, an agricultural version of Robotic Smart Work System, and validated a 3-D position information system with a low cost omni camera and a laser marker system in the lab environment in order to get a vision based tele-operating system and 3-D position information. Results: The tasks like harvesting of the fixed target and cultivation management were accomplished even if there was a short time delay (30 ms ~ 100 ms). Although automatic conveyor works requiring accurate timing and positioning yield high productivity, the tele-operation with user's intuition will be more efficient in unstructured environments which require target selection and judgment. Conclusions: This system increased work efficiency and stability by considering ancillary intelligence as well as user's experience and knowhow. In addition, senior and female workers will operate the system easily because it can reduce labor and minimized user fatigue.

A Study on Development of PC Based In-Line Inspection System with Structure Light Laser (구조화 레이저를 이용한 PC 기반 인-라인 검사 시스템 개발에 관한 연구)

  • Shin Chan-Bai;Kim Jin-Dae;Lim Hak-Kyu;Lee Jeh-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.82-90
    • /
    • 2005
  • Recently, the in-line vision inspection has become the subject of growing research area in the visual control systems and robotic intelligent fields that are required exact three-dimensional pose. The objective of this article is to study the pc based in line visual inspection with the hand-eye structure. This paper suggests three dimensional structured light measuring principle and design method of laser sensor header. The hand-eye laser sensor have been studied for a long time. However, it is very difficult to perform kinematical analysis between laser sensor and robot because the complicated mathematical process are needed for the real environments. In this problem, this paper will propose auto-calibration concept. The detail process of this methodology will be described. A new thinning algorithm and constrained hough transform method is also explained in this paper. Consequently, the developed in-line inspection module demonstrate the successful operation with hole, gap, width or V edge.

Localization of Mobile Robot Using Active Omni-directional Ranging System (능동 전방향 거리 측정 시스템을 이용한 이동로봇의 위치 추정)

  • Ryu, Ji-Hyung;Kim, Jin-Won;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.483-488
    • /
    • 2008
  • An active omni-directional raging system using an omni-directional vision with structured light has many advantages compared to the conventional ranging systems: robustness against external illumination noise because of the laser structured light and computational efficiency because of one shot image containing $360^{\circ}$ environment information from the omni-directional vision. The omni-directional range data represents a local distance map at a certain position in the workspace. In this paper, we propose a matching algorithm for the local distance map with the given global map database, thereby to localize a mobile robot in the global workspace. Since the global map database consists of line segments representing edges of environment object in general, the matching algorithm is based on relative position and orientation of line segments in the local map and the global map. The effectiveness of the proposed omni-directional ranging system and the matching are verified through experiments.

Fabrication of waveguide using UV Ar-ion laser direct writing (Laser Direct Writing 방법을 이용한 광도파로 제작)

  • Kang H. S.;Suh J.;Lee J. H.;Kim J. O.
    • Laser Solutions
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • The laser direct writing method using a UV Argon-ion laser is studied for fabrication of waveguide. The laser direct writing system is constructed with a vision camera, a xy-stage, a motion controller and the delivery components of a laser beam. The UV Argon-ion laser has wavelength range of $333.6\~363.8$ nm. A photo-active UV curable polymer for a planar light-wave circuit(PLC) of single mode is used. This polymer is irradiated by Argon-ion laser and developed by a solvent after a post-baking. The optimum laser direct writing condition is obtained experimentally by changing various process parameters such as laser power, writing speed and focal length. The propagation and coupling loss of a optical waveguide was measured as 1dB/cm and 0.6dB/cm, respectively. Also, the minimum width of waveguide of $100{\mu}m$(ZPLW-207) is obtained. Finally, the waveguides of line, bend and branch type are successfully fabricated.

  • PDF

Minimization of Welding Defect in $CO_2$ Laser Welded Tube

  • Suh Jeong;Kang Hee-Shin;Lee Jae-Hoon;Park Kyoung-Taik;Lee Moon-Yong;Jung Byung-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.19-23
    • /
    • 2005
  • To minimize the weld defect in manufacturing of the welded tube by using $CO_2$ laser, the monitoring of the welding quality and the seam tracking along the butt-joint lengthwise to the tube axis are studied. The longitudinal butt-joint is shaped from $60kgf/mm^2$ grade steel sheet by 2 roll bending method, and welded by the $CO_2$ laser welding system equipped with the seam tracker and plasma sensor. The laser welded tube has the thickness of 1.5mm, diameter of 105.4mm and length of 2000mm. The precise positioning of the laser beam on the butt-joint to be assembled is obtained within $200{\mu}m$ by the laser vision sensor. The artificial defects in the butt-joint are well observed by the signal of plasma intensity measured from the plasma sensor of UV wavelength range within 400nm. The developed $CO_2$ laser tube welding system has the function of the precision seam tracking and the real-time monitoring of the welding quality. In conclusion, the laser welded tube can be used for manufacturing of automobile chassis and components after hydro-forming.

Real Time Edge Detection for Rounding Machines Using by CCD Vision (Vision을 이용한 실시간 모서리 가공부재의 에지검출 자동화)

  • 박종현;함이준;노태정;김경환;손상익
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.695-698
    • /
    • 2000
  • Round-cornering machines are mainly used for cornering of stiffners for ship buildings. In the present time they have been operated manually by operators. so they are need to be operated automatically without regard to any shapes of stiffners. We developed the automatic round cornering system which consists of CCd Camera, PC and laser diode to detect automatically the edge of stiffners to be processed

  • PDF