• Title/Summary/Keyword: laser repair

Search Result 87, Processing Time 0.029 seconds

Selective Removal of Thin Film on Glass Using Femtosecond Laser (펨토초 레이저 응용 선택적 어블레이션 연구)

  • Yu, J.Y.;Cho, S.H.;Park, J.K.;Yoon, J.W.;Whang, K.R.;Sugioka, K.;Hong, J.W.;Heo, W.R.;Boehme, D.;Park, J.H.;Zander, S.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • Active thin films are ubiquitous in the manufacture of all forms of flat panel display (FPD). One of the most widely employed thin films is indium tin oxide (ITO) and metal films used electrically conductive materials in display industries. ITO is widely used for fabrication of LCD, OLED device, and many kinds of optical applications because of transparency in visible range and its high conductivity and metal films are also widely employed as electrodes in various electric and display industries. It is important that removing specific area of layer, such as ITO or metal film on substrate, to fabricate and repair electrode in display industries. In this work, we demonstrate efficient selective ablation process to ITO and aluminum film on glass using a femtosecond laser (${\lambda}p=1025nm$) respectively. The femtosecond laser with wavelength of 1025nm, pulse duration of 400fs, and the repetition rate of 100kHz was used for selectively removing ITO and Al on glass in the air. We can successfully remove the ITO and Al films with various pulse energies using a femtosecond laser.

  • PDF

Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Oh, Yong-Seak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.

Demage Repair for Polymeric Composite Carbody Using Self-Healing Concept (자가치료개념을 적용한 폴리머 복합재 차체의 손상보수기법 연구)

  • Yoon Sung-Ho;So Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.309-314
    • /
    • 2004
  • This study focused on the introduction of damage repair for polymeric composite carbody. called selfing tech-healinique. using microcapsules loaded with the healing agent The manufacturing process for microcapsules with the healing agent was introduced and tile characteristics of microcapsules manufactured by varying with various manufacturing process variables were evaluated. The DCPD was used for the healing agent and microcapsules were made of urea-formaldehyde resin. The magnitude and the size distribution of microcapsules were measured by a particle size analyzer using laser diffraction technique. Thermal stability was investigated by using a TGA under continuous and isothermal heating conditions for the healing agent. microcapsules without the healing agent. microcapsules with the healing agent.

  • PDF

The Study on Laser Cladding of Heat Resisting Steel Using EuTroLoy 16006 Powder(I) - Characteristics of 1 Pass Clad Layer with Process Parameters - (EuTroLoy 16006 분말을 이용한 내열강의 레이저 클래딩에 관한 연구(I) - 공정변수에 따른 1패스 클래드 층의 특성 -)

  • Kim, Jong Do;Lee, Eun Jin;Kim, Cheol Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.299-305
    • /
    • 2017
  • Re-engineering is gaining attention due to severe environmental pollution and economic crisis. Although re-engineering in shipbuilding has been carried out steadily, technological advancements, domestic ship repair and maintenance industries are not as prevalent as shipbuilding industries. In order to solve this problems, laser cladding can significantly aid with technical development. Laser cladding produces an outstanding clad layer with minimal dilution and little porosity. In this study, prior to applying laser cladding to an exhaust valve face, the effects of various parameters that affect the characteristics of the 1 pass clad layer were investigated. When laser power was increased, the clad layer width became broader and the height was decreased. In addition, it was identified that the hardness of the clad layer was inversely proportional to the power, and the entire clad layer was diluted through an EDS chemical composition analysis.

Reconstruction of polygonal prisms from point-clouds of engineering facilities

  • Chida, Akisato;Masuda, Hiroshi
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.322-329
    • /
    • 2016
  • The advent of high-performance terrestrial laser scanners has made it possible to capture dense point-clouds of engineering facilities. 3D shape acquisition from engineering facilities is useful for supporting maintenance and repair tasks. In this paper, we discuss methods to reconstruct box shapes and polygonal prisms from large-scale point-clouds. Since many faces may be partly occluded by other objects in engineering plants, we estimate possible box shapes and polygonal prisms and verify their compatibility with measured point-clouds. We evaluate our method using actual point-clouds of engineering plants.

Influence of Metallic Sodium on Repair Weldability for Type 316FR Stainless Steel

  • Chun, Eun-Joon;Lee, Su-Jin;Suh, Jeong;Lee, Ju-Seung;Kang, Namhyun;Saida, Kazuyoshi
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The effect of residual metallic sodium on the solidification cracking susceptibility of type 316FR stainless steel was investigated via transverse-Varestraint tests. And a solidification brittle temperature range (BTR) of type 316FR stainless steel was 37 K. However, the BTR expanded from 37 to 67 K, as the amount of metallic sodium at the specimen surface increased from 0 to $7.99mg/cm^2$. Microstructural observation of the weld metal suggested that metallic sodium existed in the weld metal, including in the cell boundaries, during welding solidification. Thermodynamic calculations suggested that sodium expanded the temperature range of solidliquid coexistence during welding solidification of the steel weld metal. Therefore, the increased solidification cracking susceptibility (i.e., expansion of the BTR) in the residual sodium environment was attributed to enhanced segregation of sodium during the welding solidification; this segregation, in turn, resulted in an expanded temperature range of solid-liquid coexistence.

Deposition Characteristics and Mechanical Properties of Stainless Steel 316L Fabricated via Directed Energy Deposition (에너지 제어 용착을 이용한 스테인리스 316L의 적층 특성 및 기계적 물성 평가)

  • Yang, Seung-weon;Lee, Hyub;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.59-69
    • /
    • 2021
  • Directed energy deposition (DED) is an additive manufacturing technology involving a focused high-power laser or electron beam propagating over the substrate, resulting in melt pool formation while simultaneously supplying metal powder to the melt pool area to deposit the material. DED is performed to repair and strengthen parts in various applications, as it can be easily integrate local area cladding and cross-material deposition. In this study, we characterize stainless steel 316 L parts fabricated via DED based on various deposition conditions and geometries to widen the application of DED. The deposition characteristics are investigated by varying the laser power and powder feed rate. Multilayer deposition with a laser power of 362 W and a powder feed rate of 6.61 g/min indicate a height closest to the design value while affording high surface quality. The microhardness of the specimen increases from the top to the bottom of the deposited area. Tensile tests of specimens with two different deposition directions indicate that horizontally long specimens with respect to a substrate demonstrate a higher ultimate tensile strength and yield strength than vertically long specimens with lower elongation.

Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review

  • Slobodyan, Mikhail
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1049-1078
    • /
    • 2021
  • The review summarizes the published data on the widely applied electron-beam, laser-beam, as well as resistance upset, projection, and spot welding of zirconium alloys for nuclear applications. It provides the results of their analysis to identify common patterns in this area. Great attention has been paid to the quality requirements, the edge preparation, up-to-date equipment, process parameters, as well as post-weld treatment and processing. Also, quality control and weld repair methods have been mentioned. Finally, conclusions have been drawn about a significant gap between the capabilities of advanced welding equipment to control the microstructure and, accordingly, the properties of welded joints of the zirconium alloys and existing algorithms that enable to realize them in the nuclear industry. Considering the ever-increasing demands on the high-burnup accident tolerant nuclear fuel assemblies, great efforts should be focused on the improving the welding procedures by implementing predefined heat input cycles. However, a lot of research is required, since the number of possible combinations of the zirconium alloys, designs and dimensions of the joints dramatically exceeds the quantity of published results on the effect of the welding parameters on the properties of the welds.

Adaptive Extraction Method for Phase Foreground Region in Laser Interferometry of Gear

  • Xian Wang;Yichao Zhao;Chaoyang Ju;Chaoyong Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Tooth surface shape error is an important parameter in gear accuracy evaluation. When tooth surface shape error is measured by laser interferometry, the gear interferogram is highly distorted and the gray level distribution is not uniform. Therefore, it is important for gear interferometry to extract the foreground region from the gear interference fringe image directly and accurately. This paper presents an approach for foreground extraction in gear interference images by leveraging the sinusoidal variation characteristics shown by the interference fringes. A gray level mask with an adaptive threshold is established to capture the relevant features, while a local variance evaluation function is employed to analyze the fluctuation state of the interference image and derive a repair mask. By combining these masks, the foreground region is directly extracted. Comparative evaluations using qualitative and quantitative assessment methods are performed to compare the proposed algorithm with both reference results and traditional approaches. The experimental findings reveal a remarkable degree of matching between the algorithm and the reference results. As a result, this method shows great potential for widespread application in the foreground extraction of gear interference images.

The effects of manual acupuncture, invasive laser acupuncture and laser skin irradiation at Liver Seunggyeok(肝勝格) on the repair of D-galN-induced Liver Injury in Rats (간승격(肝勝格) 혈위(穴位)에 시술된 침자(鍼刺)와 침습(侵襲) 및 비침습(非侵襲) 레이저침요법(鍼療法)이 간손상(肝損傷) 회복에 미치는 영향)

  • Shin, Hyung-Jin;Kim, Young-Sun;Youn, Dae-Hwan;Lee, Suk-Hee;Oh, Gwang-Hwan;Jeong, Sung-Ho;Na, Chang-Su
    • Korean Journal of Acupuncture
    • /
    • v.27 no.1
    • /
    • pp.49-62
    • /
    • 2010
  • Objective: This study was performed to investigate the effect of manual acupuncture, invasive laser acupuncture and laser skin irradiation at LU8, LR4, HT8 and LR2(Liver Seunggyeok) on D-galN-induced liver injury in rats. Method: Liver injury was induced with D-galN. The experimental rats were divided four groups(Control group, EXP-1, EXP-2, EXP-3). In the Control group, liver injury-induced and not treated. EXP-1 group was liver injury-induced and carried out manual acupuncture with Young-Su(against the meridian course and following the course of the meridian) & Won-Bang(by twisting and rotating the needle) acupuncture method at Liver Seunggyeok. EXP-2 group was liver injury-induced and carried out invasive laser acupuncture at Liver Seunggyeok. EXP-3 group was liver injury-induced and carried out laser skin irradiation at Liver Seunggyeok. Result: In the change of body weight(in 1 week), EXP-1, EXP-2 and EXP-3 groups were significantly increased as compared with control group. In the change AST & ALT, EXP-1 and EXP-2 groups were significantly decreased as compared with control group. In the change of SOD, EXP-1, EXP-2 and EXP-3 groups were significantly increased as compared with control group. In the change of WBC, EXP-2 group was significantly increased as compared with control group. Conclusion: Manual acupuncture, invasive laser acupuncture and laser skin irradiation at Liver Seunggyeok had hepatotherapeutic effect on the treatment of hepatocytotoxity. Invasive laser acupuncture was as effective as manual acupuncture on the treatment of hepatocytotocity.