• 제목/요약/키워드: laser power

검색결과 2,036건 처리시간 0.024초

강의 레이저-아크 하이브리드 용접시 공정변수에 따른 비드용접특성 (II) - 용접 입열 변수의 영향 - (The characteristics of bead welding on steel with process parameter during the laser-arc hybrid welding(II) - Effect of heat input parameters -)

  • 김종도;명기훈;박인덕
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.91-96
    • /
    • 2015
  • The laser-arc hybrid welding of SS400 steel was carried out with the use of disk laser equipment of 6.6kW maximum power and MAG equipment of pulse mode. Parameter regarding heat input is one of the most important factors that directly affect penetration characteristics and welding defect. Therefore in this study, the effects of laser power, welding speed and current, voltage and pulse correction were investigated. As experiment result, it was found that the lower heat input, the more likely humping bead is formed at the back, and such humping bead could be suppressed by increasing laser power and arc current or decreasing welding speed, thus increasing heat input. Also deep penetration could be achieved by reducing arc voltage or pulse correction parameter in the same welding condition.

Characteristics of Si3N4 Laser Assisted Machining according to the Laser Power and Feed Rate

  • Kim, Jong-Do;Lee, Su-Jin;Suh, Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권7호
    • /
    • pp.963-970
    • /
    • 2010
  • This study makes an estimate of the laser-assisted machining (LAM) of an economically viable process for manufacturing precision silicon nitride ceramic parts using a high-power diode laser (HPDL). The surface is locally heated by an intense laser source prior to material removal, and the resulting softening and damage of the workpiece surface simplify the machining of the ceramics. The most important advantage of LAM is its ability to produce much better workpiece surface quality compared to conventional machining. Also important are its larger material removal rates and longer tool life. The cutting force and surface temperature were measured on-line using a pyrometer and a dynamometer, respectively. Tool wear, chips and the surface of the workpiece were measured using optical microscopy, and the surface and fractured cross-section of $Si_3N_4$ were measured by SEM. During the LAM process, the cutting force and tool wear were reduced and oxidation of the machined surface was increased according to the increase in the laser power. Moreover, the more the feed rate increased, the more the cutting force and tool wear increased.

고출력 다이오드 레이저(HPDL)를 이용한 탄소강 환봉의 표면변태경화 (Surface Transformation Hardening for Rod-shaped Carbon Steels by High Power Diode Laser)

  • 김종도;길병래;강운주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.961-969
    • /
    • 2007
  • The laser material processing has replaced a conventional material processing such as a welding, cutting, drilling and surface modification and so on. LTH(Laser Transformation Hardening) is one branch of the laser surface modification process. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power intensity comparatively. The absorptivity of the laser energy with respect to material depends on the wave length of a beam. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser(HPDL) whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.

오스테나이트계 스테인리스강과 SM45C의 연속파형 Nd:YAG 레이저 용접특성비교 (Comparison of Welding Characteristics of Austenitic 304 Stainless Steel and SM45C Using a Continuous Wave Nd:YAG Laser)

  • 유영태;오용석;노경보;임기건
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.58-67
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless and SM45C using a continuous wave Nd:YAG laser n experimentally investigated Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much Inter than those involved in conventional welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar and plates, etc. The Nd:YAG laser welding process is one of the most advanced manufacturing technologies owing to its high speed and penetration. This paper describes the weld ability of SM45C carbon steel for machine structural use by Nd:YAG laser. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

Laser Scabbling of a Concrete Block Using a High-Power Fiber Laser

  • Oh, Seong Y.;Lim, Gwon;Nam, Sungmo;Kim, TaekSoo;Kim, Ji-Hyun;Chung, Chul-Woo;Park, Hyunmin;Kim, Seonbyeong
    • 방사성폐기물학회지
    • /
    • 제19권3호
    • /
    • pp.289-295
    • /
    • 2021
  • A laser scabbling experiment was performed using a high-power fiber laser to investigate the removal rate of the concrete block and the scabbled depth. Concrete specimens with a 28-day compressive strength of 30 MPa were used in this study. Initially, we conducted the scabbling experiment under a stationary laser beam condition to determine the optimum scan speed. The laser interaction time with the concrete surface varied between 3 s and 40 s. The degree of spalling and vitrification on the surface was primarily dependent on the laser interaction time and beam power. Furthermore, thermal images were captured to investigate the spatial and temporal distribution of temperature during the scabbling process. Based on the experimental results, the scan speed at which the optical head moved over the concrete was set to be 300 mm·min-1 or 600 mm·min-1 for the 4.8-kW or 6.8-kW laser beam, respectively. The spalling rates and average depth on the concrete blocks were measured to be 87 cm3·min-1 or 227 cm3·min-1 and 6.9 mm or 9.8 mm with the 4.8-kW or 6.8-kW laser beams, respectively.

레이저 직접 패터닝에 의한 폴리이미드의 표면 특성 제어 (Tailoring Surface Properties of Polyimides by Laser Direct Patterning)

  • 황윤찬;손정민;박재희;남기호
    • 한국염색가공학회지
    • /
    • 제35권2호
    • /
    • pp.121-127
    • /
    • 2023
  • In this study, a comprehensive investigation was conducted on the morphological and property changes of laser-induced nanocarbon (LINC) as a function of laser process parameters. LINC was formed on the surfaces of polyimide films with different backbone structures under various process conditions, including laser power, scan speed, and resolution. Three different forms of LINC electrodes (i.e., continuous 3D porous graphene, wooly nanocarbon fibers, line cut) were formed depending on the laser power and scan speed. Furthermore, heteroatom doping induced from the chemical structure of the polyimide during laser patterning was found to be effective in modifying the electrical properties of LINC electrodes. The LINC surfaces exhibited different microstructures depending on the laser beam resolution under constant laser power and scan speed, allowing for controllable surface wettability. The correlation between the chemical structure of the polymer substrate, laser process parameters, and carbonized surface properties in this study is expected to be utilized as fundamental understanding for the manufacturing of next-generation carbon-based electronic devices.

$CO_2$ 레이저-MIG 하이브리드 용접부 용입깊이에 미치는 레이저 및 아크 출력의 영향 (Effects of laser and arc power on the penetration depth in $CO_2$ laser-MIG hybrid welding)

  • 홍승갑;이종봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.81-83
    • /
    • 2003
  • The potential advantages of the hybrid welding process are improved weld penetration, enhanced gap tolerance, control of weld metal composition, and improved weld quality in comparison to laser or arc welding. Especially, the deep penetration of hybrid welding is very attractive in welding of thick plates. In this study, therefore, the influence of arc power in hybrid welding on detailed bead dimensions at different laser power levels was investigated.

  • PDF

Topics on Power Photonics for High-Power Solid-state Laser

  • Nakatsuka, Masahiro
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.6-7
    • /
    • 2003
  • The inertial fusion research at ILE, Osaka moves to the fast ignition scheme with using PW laser system to achieve hot core plasma of keV-temperature by heating additionally the dense plasma imploded by the multi-beam Gekko laser system. The solid-state lasers have been developed of the peak-power from TW to PW region with the chirped pulse amplification (CPA) and optical parametric amplification (OPA) technology. (omitted)

  • PDF

레이저 무선충전 기술 연구 (Study on a Laser Wireless Power Charge Technology)

  • 이동훈;김성만
    • 한국전자통신학회논문지
    • /
    • 제11권12호
    • /
    • pp.1219-1224
    • /
    • 2016
  • 현재까지 개발된 무선 충전기술은 크게 전자기유도 방식, 자기공명 방식, 전자기파 방식 등이 있다. 하지만 기존의 방법들은 전송거리가 짧거나 전자파 장해를 일으키는 문제를 가지고 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 레이저를 이용한 무선충전 기술에 대해 연구하고 이에 대한 실험결과를 보인다. 이 기술은 송신단에 전/광 변환을 위한 레이저 광원을 사용하여 빛의 형태로 에너지를 무선으로 전송하며, 수신단에는 광/전 변환을 위해 태양전지나 PD(: Photo Diode)를 이용하는 방식이다. 10m 이상의 장거리에서는 레이저 무선충전 기술의 전송효율이 가장 높을 것으로 전망되며, 장거리 무선충전에서는 레이저 무선충전 기술이 가장 효율적인 무선충전 기술이 될 것으로 판단된다. 본 논문의 실험결과에서는 100 mW Red 레이저 송신부와 PD 수신부를 이용하여 70 m의 장거리 전송거리에서 DC-to-DC 로 2.15 %의 무선전력전송 효율을 보였다.

고출력 레이저를 이용한 인코넬 600 합금의 용접 특성 연구 (A Study of Welding Characteristics of Inconel 600 Alloy by High Power Laser)

  • 송성욱;유영태;신호준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.203-208
    • /
    • 2004
  • The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. Welding characteristics of Inconel 600 Alloy using a continuous wave Nd:YAG laser are experimentally investigated. The major process parameters studied in the present laser welding experiment were position of focus, laser power, travel speed. The gap and offset maintained as small as possible. Optical microscope were used to investigate the microstructures of the welded zone. The follow conclusions can be drawn the laser power and travel speed have a pronounced effect the fusion zone size and shape.

  • PDF