• Title/Summary/Keyword: laser pose calibration

Search Result 12, Processing Time 0.026 seconds

Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring

  • Shin, Jae-Uk;Jeon, Haemin;Choi, Suyoung;Kim, Youngjae;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.801-818
    • /
    • 2016
  • To estimate structural displacement, a visually servoed paired structured light system (ViSP) was proposed in previous studies. The ViSP is composed of two sides facing each other, each with one or two laser pointers, a 2-DOF manipulator, a camera, and a screen. By calculating the positions of the laser beams projected onto the screens and rotation angles of the manipulators, relative 6-DOF displacement between two sides can be estimated. Although the performance of the system has been verified through various simulations and experimental tests, it has a limitation that the accuracy of the displacement measurement depends on the alignment of the laser pointers. In deriving the kinematic equation of the ViSP, the laser pointers were assumed to be installed perfectly normal to the same side screen. In reality, however, this is very difficult to achieve due to installation errors. In other words, the pose of laser pointers should be calibrated carefully before measuring the displacement. To calibrate the initial pose of the laser pointers, a specially designed jig device is made and employed. Experimental tests have been performed to validate the performance of the proposed calibration method and the results show that the estimated displacement with the initial pose calibration increases the accuracy of the 6-DOF displacement estimation.

Automatic Registration of Two Parts using Robot with Multiple 3D Sensor Systems

  • Ha, Jong-Eun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1830-1835
    • /
    • 2015
  • In this paper, we propose an algorithm for the automatic registration of two rigid parts using multiple 3D sensor systems on a robot. Four sets of structured laser stripe system consisted of a camera and a visible laser stripe is used for the acquisition of 3D information. Detailed procedures including extrinsic calibration among four 3D sensor systems and hand/eye calibration of 3D sensing system on robot arm are presented. We find a best pose using search-based pose estimation algorithm where cost function is proposed by reflecting geometric constraints between sensor systems and target objects. A pose with minimum gap and height difference is found by greedy search. Experimental result using demo system shows the robustness and feasibility of the proposed algorithm.

Calibration of Structured Light Vision System using Multiple Vertical Planes

  • Ha, Jong Eun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.438-444
    • /
    • 2018
  • Structured light vision system has been widely used in 3D surface profiling. Usually, it is composed of a camera and a laser which projects a line on the target. Calibration is necessary to acquire 3D information using structured light stripe vision system. Conventional calibration algorithms have found the pose of the camera and the equation of the stripe plane of the laser under the same coordinate system of the camera. Therefore, the 3D reconstruction is only possible under the camera frame. In most cases, this is sufficient to fulfill given tasks. However, they require multiple images which are acquired under different poses for calibration. In this paper, we propose a calibration algorithm that could work by using just one shot. Also, proposed algorithm could give 3D reconstruction under both the camera and laser frame. This would be done by using newly designed calibration structure which has multiple vertical planes on the ground plane. The ability to have 3D reconstruction under both the camera and laser frame would give more flexibility for its applications. Also, proposed algorithm gives an improvement in the accuracy of 3D reconstruction.

Measurement of 3D Shape of Fastener using Camera and Slit Laser (카메라와 슬릿 레이저를 이용한 나사 3D 형상 측정)

  • Kim, Jin Woo;Song, Tae Hun;Ha, Jong Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.537-542
    • /
    • 2015
  • The measurement of 3D shape is important in inspecting the quality of product. In this paper, we present a 3D shape measurement system of fastener using a camera and a slit laser. Calibration structure with slits is used in the extrinsic calibration of the camera and laser. The pose of the camera and laser is computed under the same world coordinate system in the calibration structure. Reflection of laser light on the metal surface causes many difficulties in the robust detection of them on image. We overcome this difficulty by using color and dynamic programming. Motor stage is used to rotate the fastener to recover the whole 3D shape of the surface of it.

A Study on Development of PC Based In-Line Inspection System with Structure Light Laser (구조화 레이저를 이용한 PC 기반 인-라인 검사 시스템 개발에 관한 연구)

  • Shin Chan-Bai;Kim Jin-Dae;Lim Hak-Kyu;Lee Jeh-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.82-90
    • /
    • 2005
  • Recently, the in-line vision inspection has become the subject of growing research area in the visual control systems and robotic intelligent fields that are required exact three-dimensional pose. The objective of this article is to study the pc based in line visual inspection with the hand-eye structure. This paper suggests three dimensional structured light measuring principle and design method of laser sensor header. The hand-eye laser sensor have been studied for a long time. However, it is very difficult to perform kinematical analysis between laser sensor and robot because the complicated mathematical process are needed for the real environments. In this problem, this paper will propose auto-calibration concept. The detail process of this methodology will be described. A new thinning algorithm and constrained hough transform method is also explained in this paper. Consequently, the developed in-line inspection module demonstrate the successful operation with hole, gap, width or V edge.

An Accurate Extrinsic Calibration of Laser Range Finder and Vision Camera Using 3D Edges of Multiple Planes (다중 평면의 3차원 모서리를 이용한 레이저 거리센서 및 카메라의 정밀 보정)

  • Choi, Sung-In;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • For data fusion of laser range finder (LRF) and vision camera, accurate calibration of external parameters which describe relative pose between two sensors is necessary. This paper proposes a new calibration method which can acquires more accurate external parameters between a LRF and a vision camera compared to other existing methods. The main motivation of the proposed method is that any corner data of a known 3D structure which is acquired by the LRF should be projected on a straight line in the camera image. To satisfy such constraint, we propose a 3D geometric model and a numerical solution to minimize the energy function of the model. In addition, we describe the implementation steps of the data acquisition of LRF and camera images which are necessary in accurate calibration results. In the experiment results, it is shown that the performance of the proposed method are better in terms of accuracy compared to other conventional methods.

Autonomous Calibration of a 2D Laser Displacement Sensor by Matching a Single Point on a Flat Structure (평면 구조물의 단일점 일치를 이용한 2차원 레이저 거리감지센서의 자동 캘리브레이션)

  • Joung, Ji Hoon;Kang, Tae-Sun;Shin, Hyeon-Ho;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.218-222
    • /
    • 2014
  • In this paper, we introduce an autonomous calibration method for a 2D laser displacement sensor (e.g. laser vision sensor and laser range finder) by matching a single point on a flat structure. Many arc welding robots install a 2D laser displacement sensor to expand their application by recognizing their environment (e.g. base metal and seam). In such systems, sensing data should be transformed to the robot's coordinates, and the geometric relation (i.e. rotation and translation) between the robot's coordinates and sensor coordinates should be known for the transformation. Calibration means the inference process of geometric relation between the sensor and robot. Generally, the matching of more than 3 points is required to infer the geometric relation. However, we introduce a novel method to calibrate using only 1 point matching and use a specific flat structure (i.e. circular hole) which enables us to find the geometric relation with a single point matching. We make the rotation component of the calibration results as a constant to use only a single point by moving a robot to a specific pose. The flat structure can be installed easily in a manufacturing site, because the structure does not have a volume (i.e. almost 2D structure). The calibration process is fully autonomous and does not need any manual operation. A robot which installed the sensor moves to the specific pose by sensing features of the circular hole such as length of chord and center position of the chord. We show the precision of the proposed method by performing repetitive experiments in various situations. Furthermore, we applied the result of the proposed method to sensor based seam tracking with a robot, and report the difference of the robot's TCP (Tool Center Point) trajectory. This experiment shows that the proposed method ensures precision.

A Study on Intelligent Robot Bin-Picking System with CCD Camera and Laser Sensor (CCD카메라와 레이저 센서를 조합한 지능형 로봇 빈-피킹에 관한 연구)

  • Kim, Jin-Dae;Lee, Jeh-Won;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.58-67
    • /
    • 2006
  • Due to the variety of signal processing and complicated mathematical analysis, it is not easy to accomplish 3D bin-picking with non-contact sensor. To solve this difficulties the reliable signal processing algorithm and a good sensing device has been recommended. In this research, 3D laser scanner and CCD camera is applied as a sensing device respectively. With these sensor we develop a two-step bin-picking method and reliable algorithm for the recognition of 3D bin object. In the proposed bin-picking, the problem is reduced to 2D intial recognition with CCD camera at first, and then 3D pose detection with a laser scanner. To get a good movement in the robot base frame, the hand eye calibration between robot's end effector and sensing device should be also carried out. In this paper, we examine auto-calibration technique in the sensor calibration step. A new thinning algorithm and constrained hough transform is also studied for the robustness in the real environment usage. From the experimental results, we could see the robust bin-picking operation under the non-aligned 3D hole object.

Kinematic Calibration Method for Redundantly Actuated Parallel Mechanisms (여유구동 병렬기구의 기구학적 보정)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • To calibrate a non-redundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism's kinematic structure and measurement values. However, the calibration algorithm for a non-redundant case does not apply fur a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm fir a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

  • PDF

A Study on Intelligent Robot Bin-Picking System with CCD Camera and Laser Sensor (CCD카메라와 레이저 센서를 조합한 지능형 로봇 빈-피킹에 관한 연구)

  • Shin, Chan-Bai;Kim, Jin-Dae;Lee, Jeh-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.231-233
    • /
    • 2007
  • In this paper we present a new visual approach for the robust bin-picking in a two-step concept for a vision driven automatic handling robot. The technology described here is based on two types of sensors: 3D laser scanner and CCD video camera. The geometry and pose(position and orientation) information of bin contents was reconstructed from the camera and laser sensor. these information can be employed to guide the robotic arm. A new thinning algorithm and constrained hough transform method is also explained in this paper. Consequently, the developed bin-picking demonstrate the successful operation with 3D hole object.

  • PDF