• Title/Summary/Keyword: laser intensity

Search Result 787, Processing Time 0.027 seconds

Study of The Anisotropy of Electron Energy Distribution of Optical-Field Ionized Oxygen Plasma by Using Polarization Spectroscopy

  • Kim, Dong-Eon;Kim, Jae-Hoon;Kawachi, Tetsuya;Hasegawa, Noboru;Sukegawa, Kouta;Iwamae, Atsushi;Fujimoto, Takashi
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.145-149
    • /
    • 2003
  • The anisotropy of electron energy distribution in oxygen plasmas produced by a high intensity laser was investigated by using polarization spectroscopy. An ultra-short pulsed laser with a pulse duration of 66.5 fs and a power density of $1 {\times} 10^17/ W/$\textrm{cm}^2$$ was used. At this power density and pulse duration, the plasma was generated predominantly by optical field ionization. The degree of polarization of OVI 1s$^2$2p$^2$p2- 1s$^2$4d$^2$D$^{0}$ (J = 1/2-3/2 and 3/2-5/2) transition line at 129.92 $\AA$ was measured. O VI 1s$^2$2p$^2$P$^2$ -1s$^2$4s$^2$S$^2$ (J = 1/2-1/2 and 3/2-1/2) transition line at 132.26 $\AA$ was used to calibrate the sensitivity of the optical system. The dependencies of the degree of polarization on the initial gas density and on the laser polarization were investigated. When the laser polarization was changed from a linear to a circular polarization, the degree of polarization was decreased. When the initial gas density was increased, the degree of polarization was decreased.

Electrical properties of n-ZnO/p-Si heterojunction photovoltaic devices

  • Kang, Ji Hoon;Lee, Kyoung Su;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.306.1-306.1
    • /
    • 2016
  • ZnO semiconductor material has been widely utilized in various applications in semiconductor device technology owing to its unique electrical and optical features. It is a promising as solar cell material, because of its low cost, n-type conductivity and wide direct band gap. In this work ZnO/Si heterojunctions were fabricated by using pulsed laser deposition. Vacuum chamber was evacuated to a base pressure of approximately $2{\times}10^{-6}Torr$. ZnO thin films were grown on p-Si (100) substrate at oxygen partial pressure from 5mTorr to 40mTorr. Growth temperature of ZnO thin films was set to 773K. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnO target, whose density of laser energy was $10J/cm^2$. Thickness of all the thin films of ZnO was about 300nm. The optical property was characterized by photoluminescence and crystallinity of ZnO was analyzed by X-ray diffraction. For fabrication ZnO/Si heterojunction diodes, indium metal and Al grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. Finally, current-voltage characteristics of the ZnO/Si structure were studied by using Keithly 2600. Under Air Mass 1.5 Global solar simulator with an irradiation intensity of $100mW/cm^2$, the electrical properties of ZnO/Si heterojunction photovoltaic devices were analyzed.

  • PDF

Manufacturing Process of Self-Luminous Glass Tube (SLGT) Utilizing Tritium Gas (I) (삼중수소 활용을 위한 자발광유리관 (SLGT) 제조기술)

  • Kim Kwangsin;Kim Kyeongsook;Chung Eun-Su;Son Soon Hwan;Nam Gi-Jung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.87-95
    • /
    • 2005
  • Laser sealing/cutting technique, one of the 4 core technologies to manufacture self-luminous glass tubes (SLGTs) has been developed. Through the analysis of commercial products it is found that Pyrex Is used for SLGTs. A CO2 laser, which is commonly used for glass work was used for the study The factors affecting the sealing/cutting were laser intensity, duration. Irradiation method, and pressure inside the tube. The whole Process is composed of 2 stages. In the first stage. both ends of the tubes are sealed while tritium is insected in the tubes. And the tritium sealed tubes are cut in the desired size in the second stage. Defocused beam was used for seal ing and focused beam was used for cutting. After the sealing/cutting, the tubes were heat treated to prevent fracture due to the residual heat stress.

  • PDF

Three-staged amplifier properties of single-short pulsed distributed feedback dye laser using a XeCl laser (XeCl 레이저를 이용한 단일 단펄스 분포궤한 색소레이저의 3단 증폭기 특성)

  • 김성훈;이영우;김용평
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.424-429
    • /
    • 1999
  • The amplifier properties of single distributed feedback dye laser with 106 ps pulse width and 616 nm wavelength were invested using only one XeCl-excimer laser as pump source. For optimized amplification of DFDL, the three-stage amplifiers were arranged with increasing cross-section and accordingly increasing pump energies. The first AmpI, II stages were dye cell of 5 mm, 10 mm and contained a $6{\times}10^{-4}$ [mol/l](solvent : Methanol) of Rhodamine 610. Double-pass amplification in the AmPII was measured to suppress the ASE by using a diffraction grating. The beam intensity of AmpI, II was saturated with a gain of respectively 10 and 48. The last AmpIII was Bethune cell of 30 mm and contained a $3{\times}10^ {-4}$ [mol/l] (solvent : Ethanol) of Rhodamine 610. In the single-pass and double-pass amplification, the output energy was obtained 168.2 $\mu$J and 471$\mu$J respectively.

  • PDF

Laser lithography system for the fabrication of optical waveguides (광도파로 소자 제작을 위한 레이저 리소그래피 장치)

  • Park, K. H.;Byun, Y. T.;Kim, M. W.;Kim, S. H.;Choi, S. S.;Cho, W. R.;Park, S. H.;Kim. U.
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.169-173
    • /
    • 1997
  • Most conventional lithography systems have been oriented to fabricate electronic devices. Therefore, it is not so easy to fabricate large aspect ratios of waveguide patterns with those systems. When considering costs and efficiencies, a laser lithography system provides number of benefit in realizing waveguide patterns. However, because the conventional laser lithography system could make only positive tone masks, it is inconvenient in determining the direction of the waveguide. A simple and reliable technique to produce negative tone masks was developed by using the laser beam writing. This technique was not sensitive to environmental situations such as dust, vibration, intensity variation. Making use of the technique a variety of device patterns such as Y-branch, directional coupler, and highly smooth S-shape bend could be successfully fabricated with a good contrast.

  • PDF

Development of Intergrated Vision System for Unmanned-Crane Automation System (무인 크레인 자동화 시스템 구축을 위한 통합 비전 시스템 개발)

  • Lee, Ji-Hyun;Kim, Mu-Hyun;Park, Mu-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.259-263
    • /
    • 2010
  • This paper introduces an integrated vision system that enables us to detect the image of Slabs and Coils and get the complete three dimensional location data without any other obstacles in the field of unmanned-crane automation system. Existing researches with laser scanner tend to be easily influenced by environment in the work place so they cannot give the exact location information. Also, CCD camera has some problems recognize the pattern because of intensity of illumination caused in the industrial setting. To overcome these two weaknesses, this thesis suggests laser scanner should be combined with CCD camera named integrated vision system. This system can draw more clear pictures and take the advanced 3D location information. The suggested system is expected to help build unmanned-crane automation system.

  • PDF

Effect of LEDs Light of 633 nm Wavelength in Skin of Organism (633 nm 파장의 LED 광원이 생체 피부에 미치는 영향)

  • Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.760-765
    • /
    • 2008
  • Low power laser therapy is internationally certified and is known to be effective in stimulating DNA in living organisms, increasing protein synthesis and activating cell division, smoothing blood circulation, promoting cell activation, cell regeneration and function. It also has anti-inflammatory, anti-edemic, anti-fibrous dysplastic and neuralogic hyperfunctional effects. This study was intended to verify the effect of LED irradiation therapy on wound healing in cell and animal tests by applying LED irradiator using a laser and laser diode, which was independently designed and developed to emit beams of similar wavelength to that of a laser. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity and reservation. In case of cell proliferation experiment, each experiment was performed to irradiation group and non-irradiation group for tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of micro-plate reader. In the wound healing experiment, 1$cm^2$ wounds on the skin wound of SD-Rat(Sprague-Dawley Rat) were made. Light irradiation group and none light irradiation group divided, each group was irradiated one hour a day for 9 days. As a result, the cell increase of tissue cells was verified in irradiation group as compared to non-irradiation group. And, compared with none light irradiation group, the lower incidence of inflammation and faster recovery was shown in light irradiation group.

A Study of the Diffusion and Rise of Stack Plumes at Coastal Region by Using LIDAR Observation Data

  • Yoon, Ill-Hee
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.43-58
    • /
    • 1998
  • The Kwinana Shoreline Fumigation Experiment (KSFE) took place at Fremantle, WA, Australia between January 23 and February 8, 1995. The CSIRO DAR LIDAR measured plume sections from near the Kwinana Power Station (KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminum-garnet (Nd:YAG) laser operating at a fundamental wavelength of 1064 nm, with harmonics of 532 nm and 355 nm. For these experiments the third harmonic was used because the UV wavelength at 355 nm is eye safe beyond about 50 m. The laser fires a pulse of light 6 ns in duration (about 1.8 m long) and with an energy (at the third harmonic) of about 70 mJ. This pulse subsequently scattered and absorbed by both air molecules and particles in the atmosphere. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detected by a photo-multiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The smoke plume was clearly identifiable in the scans both before and after fumigation in the thermal internal boundary layer (TIBL). Both power station plumes were detected. Over the 9 days of operation, 1,568 plumes scans (214 series) were performed. Essentially all of these will provide instantaneous plume heights and widths, and there are many periods of continuous operation over several hours when it should be possible to compile hourly average plume statistics as well. The results of four days LIDAR observations of the dispersion of smoke plume in the TIBL at a coastal site are presented for the case of stages A and C.

  • PDF

Design and fabrication of a holographic scanner using the ray tracing method (광선 추적을 이용한 홀로그래픽 스캐너의 설계 및 제작)

  • 김종재;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.107-113
    • /
    • 1999
  • Low-aberration holographic scanners that eliminate the need for lenses and mirrors promise to greatly reduce the cost of laser printers and image scanners. In this study, a holographic optical element that can simultaneously scan and focus a laser beam is designed with analytic ray tracing method. An analytic and experimental work is conducted in which we investigated the hologram structure and hologon configuration for linear aberration-free scanning. For a prototype scanner, a He-Ne laser is used to manufacture and reconstruct the hologram, and the measured bow is about $\pm$133$\mu\textrm{m}$ and spot size(half-intensity beamwidth) in under 100$\mu\textrm{m}$ for a 300 mm scan length without using a correcting lens or mirror. The diffraction efficiency is about 55$\pm$5%, which is acceptably flat. The experimentally measured results agrees with the computed values. From this fact, we can conclude that the computed results using ray tracing method are practical and useful values, and have a potential for use in high resolution laser printers.

  • PDF

Measurement of Liquid Oscillation in Tuned Liquid Dampers using a Laser Doppler Vibrometer (레이저진동계를 사용한 동조액체댐퍼의 액체 진동 측정)

  • Shin, Yoon-Soo;Min, Kyung-Won;Kim, Junhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.513-519
    • /
    • 2016
  • In this study, dynamic vertical displacement of liquid in the tuned liquid column damper(TLCD) is measured by a laser Doppler vibrometer(LDV) to overcome limitations of existing sensors and to leverage noncontact sensing. Addressing advantages of noncontact measurements, operational principles of the LDV to measure velocity and displacement of a target object in motion is explained. The feasibility of application of the LDV to measurement of liquid motion in the TLCD is experimentally explored. A series of shake table tests with the TLCD are performed to determine requirements of application of the LDV. Based on the experimental results, it is proved that the LDV works under the condition of adding dye to the liquid by increasing the intensity of reflected laser and thus validity is verified by comparison with a conventional wave height meter.