• Title/Summary/Keyword: laser intensity

Search Result 787, Processing Time 0.025 seconds

Study on the Effective Focal Volume Change due to Light Intensity Using Fluorescence Correlation Spectroscopy (형광상관분광법을 이용한 광세기에 따른 유효 초점 부피 변화에 대한 연구)

  • Jeong, Chanbae;Lee, Jaeran;Kim, Sok Won
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.71-76
    • /
    • 2013
  • Using fluorescence correlation spectroscopy, we analyzed the change of effective focal volume of a confocal system with light intensity. The fluorescence correlation spectroscopy system was home-built in accordance with the He-Ne laser with a wavelength of 632.8 nm, and two kinds of samples (AlexaFluor657 and Quantum dot655) suitable for the wavelength of the laser beam were used. For each sample, we analyzed and compared the correlation functions obtained while changing the intensity of the light source in a range of 1~50 ${\mu}W$. The result shows that the radius of the focal area increases linearly through the increase of particle number and diffusion time in response to an intensity change in weak light below 10 ${\mu}W$. In the higher intensity region (>10~15 ${\mu}W$), the increasing rate of particle number and diffusion time keep increasing but at a much slower rate. Through this result, it was also found that the radius increasing rate of the focal area was reduced however, the radius still increased slightly.

Measurement of Fuel Vapor Concentration by Excimer Fluorescence Method (Excimer 형광법을 이용한 연료증기 농도측정법에 대한 연구)

  • Hwang, Seung-min
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.437-445
    • /
    • 2018
  • Laser induced-exciplex-fluorescence (EXCIPLEX) proposed by Melton is used to visualize fuel vapor in spray combustion. However, in the EXCIPLEX method based on TMPD/naphthalene system, the TMPD : naphthalene ratio is strictly restricted to 1 : 9. In addition, fluorescence intensity due to the vapor phase is extremely weak. To overcome these drawbacks, we propose a new laser-induced-excimer fluorescence (EXCIMER) method to visualize the liquid and vapor phases simultaneously. The spatial distributions of liquid and vapor in fuel spray suspended by ultrasonic waves are compared using the EXCIPLEX and EXCIMER methods. The correlation between fuel vapor concentration and fluorescence intensity is experimentally investigated by measuring the fluorescence intensity of saturated vapor formed over liquid fuel at a controlled temperature. These experimental results indicate that the EXCIMER method is effective for evaluating fuel vapor visualization in spray combustion. Furthermore, the quantitative distribution of fuel vapor concentration can be correctly estimated by the EXCIMER method.

FABRICATION AND CHARACTERIZATION OF NONLINEAR OPTICAL GLASSES

  • Cardinal, T.;Fargin, E.;Le Flem, G.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.4-5
    • /
    • 2001
  • Advent of lasers offering high intensity beam has opened the glass to the nonlinear optic (NLO). The high electric field associated with such laser beams can be so large that high order components of the glass polarization can be measured. Such development is of scientific and technological interests in particular in systems involving an intensity-dependent refractive index and/or ultra-fast response (<10$\^$-12/s). From a scientific viewpoint the NLO response intensity must be understood as a function of the glass composition. On the other hand, large family of applications are presently under investigation in various fields of optical materials or systems e.g. laser glasses for fusion energy, soliton propagation for ultra-long distances, ultra-fast-switching, optical storage etc....(omitted)

  • PDF

An effect of the characteristics of incident laser beams on laser-induced incandescence signals (LII 신호에 대한 입사 레이저 특성의 영향)

  • Jurng, Jong-Soo;Lee, Gyo-Woo
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.45-50
    • /
    • 1997
  • An experimental study on LII signal images from soot particles in a flame has been carried out in order to investigate the effect of the incident laser characteristics. By changing the wavelength of the incident laser beam, the LII signal was saturated at smaller laser power with 532 nm than 1,064 nm. This implies that the larger absorption coefficient of soot particles at 532 nm would influence the LII signal characteristic. Using the deconvolution technique, the projected LII line images were coverted to reconstruct the local LII signals inside the beam. The results show that the LII images at ICCD camera result from the integration of LII signal across the laser beam.

  • PDF

LASER-INDUCED SOOT VAPORIZATION CHARACTERISTICS IN THE LAMINAE DIFFUSION FLAMES

  • Park, J.K.;Lee, S.Y.;Santor, R.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.95-99
    • /
    • 2002
  • The characteristics of soot vaporization induced by a high-energy Pulsed laser were studied in an ethylene-air laminar flame. A system consisting of two pulsed lasers was used for the experiments. The pulse from the first laser was used to vaporize the soot particles, and the delayed pulse from the second laser was used to measure the residual soot volume fraction. Laser-induced soot vaporization was characterized according to the initial particle size distribution. The results indicated that soot particles could not be completely vaporized simply by introducing a high intensity laser pulse. Residual soot volume fractions present after vaporization appeared to be insensitive to the initial soot particle size distribution. Since the soot vaporization effect is more pronounced in the region of high soot concentrations, this laser-induced soot vaporization technique may be a very useful tool for measuring major species in highly sooting flame.

Investigation of Laser Scattering Pattern and Defect Detection Based on Rayleigh Criterion for Crystalline Silicon Wafer Used in Solar Cell (태양전지 실리콘 웨이퍼에서의 레일리기준 기반 레이저산란 패턴 분석 및 결함 검출)

  • Yean, Jeong-Seung;Kim, Gyung-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.606-613
    • /
    • 2011
  • In this paper, patterns of laser scattering and detection of micro defects have been investigated based on Rayleigh criterion for silicon wafer in solar cell. Also, a new laser scattering mechanism is designed using characteristics of light scattering against silicon wafer surfaces. Its parameters are to be optimally selected to obtain effective and featured patterns of laser scattering. The optimal parametric ranges of laser scattering are determined using the mean intensity of laser scattering. Scattering patterns of micro defects are investigated at the extracted parameter region. Among a lot of pattern features, both maximum connected area and number of connected component in patterns of laser scattering are regarded as the important information for detecting micro defects. Their usefulness is verified in the experiment.

Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (IV) - Correlation of Keyhole's Periodic Motion and FFT Analysis Results - (API강재의 파이버레이저 용접시 유기하는 플라즈마의 방사특성 (IV) - 키홀의 주기운동과 FFT분석의 상관성 -)

  • Kim, Jong-Do;Lee, Chang-Je;Suh, Jeong
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.28-33
    • /
    • 2013
  • The effects of laser welding beam quality is very large. However, not an analysing case was found for the difference on the plasma emission signal during laser welding according to the beam quality. Therefore, in this study, we compared and evaluated penetration and signal change according to the beam quality at the a similar wavelength band by using a fiber laser and Nd:YAG laser. In addition, we took high speed videography in order to make sure that FFT analysis reflects the actual motion period of keyhole and found the period of video analysis and FFT mostly matched. As a result, it is expected to secure higher reliability than evaluating signal intensity when appling FFT to monitoring.

EFFECT OF ND : YAG LASING ON TEMPERATURE RISING AND PROPERTIES OF MATTER OF DENTAL IMPLANTS (Nd : YAG LASER 조사가 치과 임플란트의 물성과 온도 상승에 미치는 영향)

  • Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.489-500
    • /
    • 1996
  • Pulsed Nd : YAG LASER has been applied to various fields in clinical dentistry including the treatment of peri-implantitis. However, LASER can affect properties of matter of dental implants which are important to maintaining the health of peri-implant tissue and can raise its temperature during lasing. So there have been warings of using LASER to treat peri-implantitis. But, the effects of laser on dental implants itself are not certain yet. So we measured the temperature rising, examined matter of properties by SEM and EDX before and after pulsed Nd : YAG lasing various intensity. 7 TPS implants and 7 HPS implants were used and pulsed Nd : YAG LASER was used in 0.3W, 1.0W, and 2.0W. 1. 2.0W LASER made polished neck portion of HPS implants reach $39.2^{\circ}C$ after 5 seconds lasing. 2. LASER made crater-like defects on plasma sprayed surface and surfaces were melted and divided by fragments after lasing. 3. There was no specific evidence of element change after lasing.

  • PDF

A Study of Deposition Mechanism of Laser CVD SiO2 Film

  • Sung, Yung-Kwon;Song, Jeong-Myeon;Moon, Byung-Moo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.33-37
    • /
    • 2003
  • This study was performed to investigate the deposition mechanism of SiO$_2$ by ArF excimer laser(l93nm) CVD with Si$_2$H$\_$6/ and N$_2$O gas mixture and evaluate laser CVD quantitatively by modeling. With ArF excimer laser CVD, thin films can be deposited at low temperature(below 300$^{\circ}C$), with less damage and good uniformity owing to generation of conformal reaction species by singular wavelength of the laser beam. In this study, new model of SiO$_2$ deposition process by laser CVD was introduced and deposition rate was simulated by computer with the basis on this modeling. And simulation results were compared with experimental results measured at various conditions such as reaction gas ratio, chamber pressure, substrate temperature and laser beam intensity.

Gaussian Model for Laser Image on Curved Surface

  • Annmarie Grant;Sy-Hung Bach;Soo-Yeong Yi
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.701-707
    • /
    • 2023
  • In laser imaging, accurate extraction of the laser's center is essential. Several methods exist to extract the laser's center in an image, such as the geometric mean, the parabolic curve fitting, and the Gaussian curve fitting, etc. The Gaussian curve fitting is the most suitable because it is based on the physical properties of the laser. The width of the Gaussian laser beam depends on the distance from the laser source to the target object. It is assumed in general that the distance remains constant at a laser spot resulting in a symmetric Gaussian model for the laser image. However, on a curved surface of the object, the distance is not constant; The laser beam is narrower on the side closer to the focal point of the laser light and wider on the side closer to the laser source, which causes the distribution of the laser beam to skew. This study presents a modified Gaussian model in the laser imaging to incorporate the slant angle of a curved object. The proposed method is verified with simulation and experiments.