• Title/Summary/Keyword: laser forming

Search Result 217, Processing Time 0.043 seconds

Production of CO2 Laser Forming Machine for Bending of Sheet Metal Using the FE-Analysis (유한요소해석을 이용한 박판 벤딩용 CO2 레이저 성형기 제작)

  • Ko D.C.;Lee C.J.;Kim B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.319-325
    • /
    • 2006
  • The laser forming process is a new flexible forming process without forming tools and external force, which is applied to various fields of industry. Especially, applications of the laser forming process focused on cutting, welding and marking process. In this paper, the laser bending process of sheet metal which is heated by laser beam and formed by internal stress is simulated by using thermo elastic-plastic analysis model. Based on the result of FE-analysis, the laser bending machine is made to obtain reliable data for sheet bending. Under the same condition as FE-analysis, the laser bending experiment has been performed to ver 펴 the result of FE-analysis and good agreement has been obtained between FE-analysis and experiments. Additional laser bending experiments have been performed to evaluate the laser bending machine.

Laser Forming of Sheet Metal by Geometrical Information (기하학적 정보를 이용한 이중곡률 형상의 레이저 성형)

  • Kim, Ji-Tae;Na, Seok-Ju
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.91-93
    • /
    • 2005
  • Forming sheet metal by laser-induced thermal stresses (laser forming) has been extensively studied, and the research has focused on two-dimensional geometries using a multi-pass straight line scan. Recently there came out some useful studies or three-dimensional laser forming which is applied to doubly curved shapes. The task of 3D laser forming sheet metal is to determine a set of process parameters such as laser scanning paths, laser power and scanning speed that will make a given shape. New method for laser forming of a doubly curved surface by using geometrical information was proposed and verified by experiments. This method shows good performance in the sense of calculation time and accuracy compared to the inherent strain method.

  • PDF

Parameter Characterization for Underwater Laser forming of SUS430/Cu/SUS430 Laminated Composite Layer (수중 레이저 굽힘시 SUS430/Cu/SUS430 복합판재 성형 특성 분석)

  • Park, S.H.;Oh, I.Y.;Han, S.W.;Woo, Y.Y.;Hwang, T.W.;Seyedkashi, S.M.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • Laser forming is an advanced process in sheet metal forming in which thermal stress originated from the laser heat source is used to shape the metal sheet. However, substantial waiting time is normally necessary for the workpiece to cool down between consecutive scans so that a steep temperature gradient can be reestablished in the next scan. In order to solve this drawback, laser bending characteristics are experimentally implemented in underwater condition. Laser forming effects under various conditions, including different laser power, scanning velocity, beam diameter, number of passes and material, are investigated. The results show that the underwater laser forming facilitates deliberate forming. The bending angle per respective laser scan is decreased with increasing the number of passes and scanning velocity.

Effect of Specimen Geometry on deformation in laser forming of sheet metal (레이저 성형에서 시편의 기하학적 형상에 따른 변형의 양상에 관한 연구)

  • Nadeem, Q.;Seong, W.J.;Na, S.J.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.22-22
    • /
    • 2009
  • Laser forming is a promising technology in manufacturing, such as in the shipbuilding, automobile, microelectronics, aerospace and other manufacturing industries. This process forms the sheet metal by utilization of laser-induced thermal stresses. Laser forming process has been studied extensively for rectangular shape geometry. This basic study presents the change in deformation behavior of sheet metal during transition from linear to curved geometries and irradiations as well. A series of experiments have been conducted on a wide range of specimen geometries such as quarter-circular and half circular plate. The reasons for this behavior have been analyzed. Results are compared and analyzed by simulations using ABAQUS. Influence of developed stresses on the bending has been investigated. This study provides the more understanding of forming mechanism influenced by geometry effect.

  • PDF

Effects of Laser Welding Speed on the Tensile and Forming Characteristics of Tailored Blanks (레이저 용접 속도가 테일러드 블랭크의 인장 특성 및 성형성에 미치는 영향)

  • 표창률
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.7-13
    • /
    • 2000
  • Forming characteristics of tailored blank are mostly effected by the welding method. Recently, laser welding is widely used for the tailored blank. However, tensile and forming characteristics vary due to welding conditions such as welding speed, heat flux etc. The objective of this paper is to evaluate the effect of welding speed on the tensile and forming characteristics of laser welded tailored blank. For this purpose, tailored blank specimens with different welding speed were prepared and tensile tests were performed. Also forming tests such as LDH and OSU test, were performed to evaluate the effect of welding speed on the forming characteristics. Finally, forming limit diagrams were obtained for different welding speed.

  • PDF

Forming Limit Diagram of Laser Welded Blank and Its Application to Forming Analysis of Stamping Dies (레이저 용접 합체박판의 성형한계도와 스탬핑 금형 성형해석에 적용)

  • 금영탁;구본영;박승우;유석종;이경남
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.3-9
    • /
    • 2000
  • The new FLD of the laser welded blank, which includes FLCs of welded zone and base metals, is introduced. For the forming limits of welded zone, the hemispherical dome punch tests were performed with various widths of asymmetric specimen. The FLC0 as well as the dome height at fracture associated with various specimen widths in the same and different thickness combinations were found to see the formability depending on thickness combinations. In order to show the application of the new FLD, the measured strains of squared cup drawing and simulated strains of door inner panel stamping were compared with those of FLCs. The successful prediction of fracture in the applications reveals that the forming limits of welded zone and base metals should be separately found for more accurate evaluation of the formability and workability of the laser welded blank.

  • PDF

Experimental Investigation on Forming Limit of Laser Welded Blank Sheets (레이저 합체박판의 성형한계평가 실험에 관한 연구)

  • 박승우;구본영;금영탁;강수영;류석종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.72-75
    • /
    • 1997
  • In this paper, the forming limits of laser welded blank sheets are introduced, obtained from a tensile test and a hemispherical dome punch test. Especially, the forming limit diagram(FLD) on the heat affected zone with a width 2.54mm is emphasized. Also, the experimental experiences in finding specific strain conditions are discussed.

  • PDF

Various Pulse Forming of Pulsed $CO_2$ laser using Multi-pulse Superposition Technique

  • Chung, Hyun-Ju;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.127-132
    • /
    • 2001
  • We describe the pulse forming of pulsed $CO_2$laser using multi-pulse superposition technique. A various pulse length, high duty cycle pulse forming network(PFN) is constructed by time sequence. That is, this study shows a technology that makes it possible to make various pulse shapes by turning on SCRs of three PFN modules consecutively at a desirable delay time with the aid of PIC one-chip microprocessor. The power supply for this experiment consists of three PFN modules. Each PFN module uses a capacitor, a pulse forming inductor, a SCR, a High voltage pulse transformer, and a bridge rectifier on each transformer secondary. The PFN modules operate at low voltage and drive the primary of HV pulse transformer. The secondary of the transformer has a full-wave rectifier, which passes the pulse energy to the load in a continuous sequence. We investigated laser pulse shape and duration as various trigger time intervals of SCRs among three PFN modules. As a result, we can obtain laser beam with various pulse shapes and durations from about 250 $mutextrm{s}$ to 600 $mutextrm{s}$.

  • PDF

Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation (DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구)

  • Song, J.H.;Zhang, Y.;Lee, J.S.;Park, S.J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.

Development of a irradiation strategy within a closed loop control system for the laser adjustment of deformation

  • Hutterer, A.;Hagenah, H.;Geiger, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2313-2318
    • /
    • 2003
  • By means of flexible forming processes in sheet metal manufacturing it is possible to produce parts of complex geometry within short manufacturing time. These procedures are suitable especially for prototyping or adjustment of deformation. Here formative procedures like laser forming are increasingly important, because they make the large-scale-like production of the prototypes with the required materials possible. High accuracy and reproducibility of the products is the precondition of the production. Due to the lack of a forming tool, complex geometries can hardly be manufactured within tolerances. To overcome this problem an automatic closed loop control system for the adjustment of deformations has been developed. An important element of the closed loop control system is the definition of a suitable irradiation strategy for laser forming. For the determination of the irradiation strategy a lot of influences must be taken into consideration from the field of material, geometry and laser. In this paper the improved closed loop control system and the development of an irradiation strategy for 4 mm deep buckles in an ALMgSi1 sheet will be represented. This system can be used e.g. in the automated adjustment of hail damage in car bodies or deformation by heat treatment.

  • PDF