• Title/Summary/Keyword: laser doping

Search Result 112, Processing Time 0.03 seconds

Second harmonic generation of YCOB($YCa_4O(BO_3)_3$) (YCOB($YCa_4O(BO_3)_3$)의 제2조화파 발생)

  • 장원권
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.301-305
    • /
    • 1999
  • The phase matching conditions of the new optical crystal grown by Czochralski pulling method, YCOB($YCa_4O(BO_3)_3$) with wavelength were suggested, and the second harmonic generation efficiency for the fundamental of Nd:YAG laser of 1064 nm was investigated. The variation of nonlinearity with rare earth ion doping was also investigated by measuring the second harmonic generation efficiencies of $Yb^{3+}$ + $Nd^{3+}$and ion doped YCOBs.

  • PDF

Effects of Codoping with Fluorine on the Properties of ZnO Thin Films

  • Heo, Young-Woo;Norton, D.P.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.738-742
    • /
    • 2006
  • We report on the effects of co-doping with fluorine on properties of ZnO thin films grown by pulsed-laser deposition. The transport characteristics of Ag-F and Li-F codoped ZnO films were determined by Hall-effect measurements at room temperature. Ag-F codoped ZnO films showed n-type semiconducting behaviors. An ambiguous carrier type was observed in Li-F codoped ZnO films grown at a temperature of 500$^{\circ}C$ with the oxygen pressures of 20 and 200 mTorr. The qualities of the codoped ZnO films were studied by X-ray diffraction, atomic force microscopy, X-ray photoemission spectroscopy, and photoluminescence.

Photoinduced anisotropy in the Ag and Cu photodoped chalcogenide As-Ge-Se-S thin films (칼코게나이드 As-Ge-Se-S 박막에서 Ag와 Cu 광도핑에 의한 광유기 이방성)

  • 박종화;장선주;박정일;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.535-538
    • /
    • 2000
  • We have investigated the photoinduced anisotropy in chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin films, non-doped and photodoped by Ag and Cu. The films were exposed by the linearly polarized He-Ne laser light( $\lambda$=632.8nm). The Ag and Cu photodoping resulted in reducing the time of saturation photoinduced linearly dichroism. Also photoinduced linearly dichroism was increased up to maximum 184% by Ag photodoping and 138% by Cu photodoping, respectively. As the result of this study, the linearly dichroism can be interesting for different applications of photoinduced anisotropy. In addition, it will offer lots of information for the photodoping mechanism and analysis of chalcogenide thin film.

  • PDF

Doping Method by xeCl Excimer Laser Irradiation on Deposited Silicon Film (증착된 실리콘 Film에 xeCl 엑시머 레이저 조사를 통한 도핑 방법)

  • Cho, Kyu-Heon;Lim, Ji-Yong;Choi, Young-Hwan;Ji, In-Hwan;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1379-1380
    • /
    • 2007
  • 본 연구에서는 XeCl 엑시머 레이저를 통해서 GaN를 선별적으로 고농도 도핑 할 수 있는 새로운 방법을 제안했으며, 제안된 방법에 의해 제작된 소자는 낮은 ohmic contact 저항을 나타내었다. 증착된 실리콘 film에 XeCl 엑시머 레이저를 사용하여 GaN 위에 sputtering 함으로써 조사하였으며 레이저에 의해 조사된 영역에는 ohmic contact을 형성하였다. 기존 방법에 의한 ohmic contact 저항이 0.66 ohm-mm이었던 반면, 레이저 도핑 공정에 의한 ohmic contact 저항은 0.27 ohm-mm로 효과적으로 감소되었다. SIMS 분석을 통해 레이저 조사를 하는 동안 높은 에너지에 의해 실리콘이 GaN로 확산되었으며, ohmic contact 저항이 ohmic contact 영역 아래의 도핑 농도 증가로 인해 감소한 것을 확인했다.

  • PDF

Arsenic Doping of ZnO Thin Films by Ion Implantation (이온 주입법을 이용한 ZnO 박막의 As 도핑)

  • Choi, Jin Seok;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.347-352
    • /
    • 2016
  • ZnO with wurtzite structure has a wide band gap of 3.37 eV. Because ZnO has a direct band gap and a large exciton binding energy, it has higher optical efficiency and thermal stability than the GaN material of blue light emitting devices. To fabricate ZnO devices with optical and thermal advantages, n-type and p-type doping are needed. Many research groups have devoted themselves to fabricating stable p-type ZnO. In this study, $As^+$ ion was implanted using an ion implanter to fabricate p-type ZnO. After the ion implant, rapid thermal annealing (RTA) was conducted to activate the arsenic dopants. First, the structural and optical properties of the ZnO thin films were investigated for as-grown, as-implanted, and annealed ZnO using FE-SEM, XRD, and PL, respectively. Then, the structural, optical, and electrical properties of the ZnO thin films, depending on the As ion dose variation and the RTA temperatures, were analyzed using the same methods. In our experiment, p-type ZnO thin films with a hole concentration of $1.263{\times}10^{18}cm^{-3}$ were obtained when the dose of $5{\times}10^{14}$ As $ions/cm^2$ was implanted and the RTA was conducted at $850^{\circ}C$ for 1 min.

Ta Doped SnO2 Transparent Conducting Films Prepared by PLD

  • Cho, Ho Je;Seo, Yong Jun;Kim, Geun Woo;Park, Keun Young;Heo, Si Nae;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.435-440
    • /
    • 2013
  • Transparent and conducting thin films of Ta-doped $SnO_2$ were fabricated on a glass substrate by a pulse laser deposition(PLD) method. The structural, optical, and electrical properties of these films were investigated as a function of doping level, oxygen partial pressure, substrate temperature, and film thickness. XRD results revealed that all the deposited films were polycrystalline and the intensity of the (211) plane of $SnO_2$ decreased with an increase of Ta content. However, the orientation of the films changed from (211) to (110) with an increase in oxygen partial pressure (40 to 100 mTorr) and substrate temperature. The crystallinity of the films also increased with the substrate temperature. The electrical resistivity measurements showed that the resistivity of the films decreased with an increase in Ta doping, which exhibited the lowest resistivity (${\rho}{\sim}1.1{\times}10^{-3}{\Omega}{\cdot}cm$) for 10 wt% Ta-doped $SnO_2$ film, and then increased further. However, the resistivity continuously decreased with the oxygen partial pressure and substrate temperature. The optical bandgap of the 10 wt% Ta-doped $SnO_2$ film increased (3.67 to 3.78 eV) with an increase in film thickness from 100-700 nm, and the figure of merit revealed an increasing trend with the film thickness.

Synthesis of Ni-MWCNT by pulsed laser ablation and its water splitting properties (레이저 어블레이션 공정에 의한 Ni-MWCNT 합성 및 물분해 특성)

  • Cho, Kyoungwon;Chae, Hui Ra;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.77-82
    • /
    • 2022
  • Recently, research on the development of low-cost/high-efficiency water electrolysis catalysts to replace noble metal catalysts is being actively conducted. Since overvoltage reduces the overall efficiency of the water splitting device, lowering the overvoltage of the oxygen evolution reaction (OER) is the most important task in order to generate hydrogen more efficiently. Currently, noble metal catalysts show excellent characteristics in OER performance, but they are experiencing great difficulties in commercialization due to their high price and efficiency limitations due to low reactivity. In this study, a water electrolysis catalyst Ni-MWCNT was prepared by successfully doping Ni into the MWCNTs structure through the pulsed laser ablation in liquid (PLAL) process. High resolution-transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) were performed for the structure and chemical composition of the synthesized Ni-MWCNT. Catalytic oxygen evolution reaction evaluation was performed by linear sweep voltammetry (LSV) overvoltage characteristics, Tafel slope, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Chronoamperometry (CA) was used for measurement.

Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films (Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향)

  • Lee, Hong-Chan;Choi, Won-Kook;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Electrical and Optical Properties of Sb-doped SnO2 Thin Films Fabricated by Pulsed Laser Deposition (펄스레이저 공정으로 제조한 Sb가 도핑된 SnO2 박막의 전기적 및 광학적 특성)

  • Jang, Ki-Sun;Lee, Jung-Woo;Kim, Joongwon;Yoo, Sang-Im
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • We fabricated undoped and Sb-doped $SnO_2$ thin films on glass substrates by a pulsed laser deposition (PLD) process. Undoped and 2 - 8 wt% $Sb_2O_3$-doped $SnO_2$ targets with a high density level of ~90% were prepared by the spark plasma sintering (SPS) process. Initially, the effects of the deposition temperature on undoped $SnO_2$ thin films were investigated in the region of $100-600^{\circ}C$. While the undoped $SnO_2$ film exhibited the lowest resistivity of $1.20{\times}10^{-2}{\Omega}{\cdot}cm$ at $200^{\circ}C$ due to the highest carrier concentration generated by the oxygen vacancies, 2 wt% Sb-doped $SnO_2$ film exhibited the lowest resistivity value of $5.43{\times}10^{-3}{\Omega}{\cdot}cm$, the highest average transmittance of 85.8%, and the highest figure of merit of 1202 ${\Omega}^{-1}{\cdot}cm^{-1}$ at $400^{\circ}C$ among all of the doped films. These results imply that 2 wt% $Sb_2O_3$ is an optimum doping content close to the solubility limit of $Sb^{5+}$ substitution for the $Sb^{4+}$ sites of $SnO_2$.

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process

  • Cho, Sung-Haeng;Choi, Yong-Mo;Kim, Hyung-Jun;Jeong, Yu-Gwang;Jeong, Chang-Oh;Kim, Shi-Yul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit