• Title/Summary/Keyword: laser displacement sensor

Search Result 171, Processing Time 0.029 seconds

Reducing the Non Grinding Time in Grinding Operations(2nd report) -Decision of Dressing Chance and Depth by the Direct Measurement of Grinding Wheel Surface- (연삭가공에 있어 비가공 시간 단축에 관한 연구(II))

  • KIM, Sun Ho;AHN, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.101-107
    • /
    • 1997
  • In general, grinding is one of the final machining processes which determines the surface quality of machined products. Since the ground surface is affected by the states of grains and voids on the grinding wheel surface, the wheel should be dressed before the machined surface deteriorates over a quality limit This paper describes a systematic approach to decide a proper dressing chance and an optimal dressing depth for the working grinding wheel. An eddy current sensor and a laser displacement sensor are used to measure the loading on the working wheel surface and the topography of the dressed wheel surface respec- tively. The dressing chance can be properly decided through the relational locus between the amount of handing and the machined surface roughness. An optimal dressing depth to guarantee the less wheel loss and the higher wheel surface quality is decided through the analysis of the variance of topography for the dressed wheel surface, which decreases at three different rates according to the accumulated dressing depth.

  • PDF

A Damage Assessment Technique for Bridges Using Static Displacements (정적변위를 이용한 교량의 손상도 평가기법)

  • Choi, Il Yoon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.641-646
    • /
    • 2002
  • A new damage detection technique using static displacement data was developed, in order to assess the structural integrity of bridge structures. In conventional damage assessment techniques using dynamic response, the variation of natural frequencies is intrinsically insensitive to the damage of the bridge: thus, it is usually difficult to obtain them from the measured data. The proposed detection method enables the estimation of the stiffness reduction of bridges using the static displacement data that are measured periodically, without requiring a specific loading test. Devices such as a laser displacement sensor can be used to measure static displacement data due to the dead load of the bridge structure. In this study, structural damage was represented by the reduction in the elastic modulus of the element. The damage factor of the element was introduced to estimate the stiffness reduction of the bridge under consideration. Likewise, the proposed algorithm was verified using various numerical simulations and compared with other damage detection methods. The effects of noise and number of damaged elements on damage detection were also investigated. Results showed that the proposed algorithm efficiently detects damage on the bridge.

A study on the Development of Bidirectional Acutator using NiTi Shape Memory Alloy (NiTi 형상기억합금을 이용한 차동식 액츄에이터 개발에 관한 연구)

  • Jeong, S. H.;Kim, K. S.;Jang, W. Y.;Kim, H. U.;Cha, K. R.;Song, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.723-726
    • /
    • 2002
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research of dynamic characteristics is very deficient. In this paper, the helical spring is fabricated with NiTi SMA wire of high resistivity The farce, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA actuator is analyzed.

  • PDF

A study on the Improvement of the Performance of Biodirectional NITINOL Actuator (NITINOL을 이용한 차동식 액츄에이터의 동작성능 향상을 위한 연구)

  • Jung, Sang-Hwa;Kim, Hyun-Wook;Cha, Kyung-Rae;Song, Seok;Shin, Byung-Soo;Lee, Kyung-Hyung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1577-1580
    • /
    • 2003
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance.

  • PDF

Real-time Motion Error Time and the Thermal Error Compensation of Ultra Precision Lathe (초정밀 가공기의 실시간 운동오차 및 열변형오차 보상)

  • Kwac Lee-Ku;Kim Hong-Gun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.44-48
    • /
    • 2006
  • Recently, demand the ultra precision product which is increasing rapidly is used extensively frontier industry field such as semi-conductor, computer, aerospace, precision machine. Ultra precision processing is the portion that is very needed to NT in the field of mechanical engineering. The latest date, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts those are connected with these industrial fields. Specially, require motion accuracy of high resolution of nm order in stroke of hundreds millimeters according as diameter of processing object great and processing accuracy rises. In this case ,the response speed absolute delay because inertial mass of moving part is very large. Therefore, real time motion error compensation becomes very hardly. In this paper, we used ultra precision cutting unit(UPCU) to cope such problem. a UPCU is designed and tested to obtain sub-micrometer from accuracy in diamond turning of flat surfaces. The thermal growth spindle error is compensated for real time using a UPCU driven by piezoelectric actuator along with a laser encoder displacement sensor.

State Classification of the Corrosion of Pipes Using a Clustering Algorithm (클러스터링 알고리즘을 이용한 배관의 부식 상태 분류)

  • Cheon, Kang-Min;Shin, Geon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.91-97
    • /
    • 2022
  • Pipes transport and supply fuel in various categories; however, corrosion occurs because of the external environment, impurities are mixed in the fuel, and substances leak to the outside, which can lead to serious accidents. Therefore, in this study, inspection equipment using a laser scanner was manufactured to classify conditions according to the degree of corrosion of the outer wall of the pipe, and the corrosion height and maximum value of the pipe were obtained from the surface information. Using the k-means method, it was classified into four states, and the standard of the average height and maximum height of corrosion for each state was derived.

Prediction for Large Deformation of Cantilever Beam Using Strains (변형률을 이용한 외팔보의 구조 대변형 예측)

  • Park, Sunghyun;Kim, In-Gul;Lee, Hansol;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.396-404
    • /
    • 2015
  • The UAV's wing has high aspect ratio that is suitable for the high altitude and long endurance. Knowing the real-time deformation of wing structure in flight, it can be utilized in structural health and loading status monitoring, improvement of control effectiveness and extraordinary vibration phenomena using displacement-strain relationship. In this paper, nonlinear displacement prediction algorithm was developed for prediction of large structural deflection in flight. The algorithm was validated through the comparison with finite element analysis results and also experimental results for several large tip displacements of cantilever beam. The predicted displacements using strains are agreed well with the measured values from laser displacement sensor.

Reliability Evaluation System of Hot Plate for PR Baking (Hot Plate 신뢰성 시험.평가장비 개발)

  • 송준엽;송창규;노승국;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.566-569
    • /
    • 2001
  • Hot Plate is the major unit that it used to remove damp of wafer surface, to strength adhesion of photoresist(PR) and to bake coated PR in FAB process of semiconductor. It is necessary to guarantee the performance of Hot Plate(HP). Therefore, in this study designed and developed the reliability system of HP to measure and estimated thermal uniformity and flatness in temperature setting amplitude $0~250^{\circ}C$. We developed the techniques that measures and analyzes thermal uniformity using infrared thermal vision, and compensates measuring error of flatness using laser displacement sensor. For measuring flatness, we specially makes the measurement stage of 3 axes which adopts the precision encoder. The allowable error of measuring technique is less than thermal uniformity, $\pm 0.1^{\circ}C$ and flatness, $\pm 1mm$. It is expected that the developed system can measure from $\Phi$210(wafer 8") to $\Phi$356(wafer 12") and also can be used in performance test of the Cool Plate and industrial heater, etc.

  • PDF

Fabrication of Biomimetic MEMS Acoustic Sensor and Analysis of Its Frequency Characteristics (MEMS 기반 생체모사 음향센서 제작 및 주파수 특성 분석)

  • Hur, Shin;Jung, Young-Do;Lee, Young-Hwa;Song, Won-Joon;Kim, Wan-Doo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.522-528
    • /
    • 2011
  • Artificial basilar membranes made of PVDF(polyvinylidene fluoride) are manufactured using microfabrication processes. The mechanical behavior of PVDF artificial basilar membrane was measured to evaluate its performance as a mechanical frequency analyzer using scanning LDV(laser Doppler vibrometer). The experimental setup consists of the microfabricated artificial basilar membrane, a loud speaker connected to an amplifier for generating acoustic pressure of specific spectral pattern, and a scanning LDV with controlling unit for measuring the displacement of the membrane on the incoming acoustic stimulation. The microfabricated artificial basilar membrane was attached tightly upon a package containing a chamber which can be filled with silicone oil before placed on the experimental setup stage. The experiment results showed that the microfabricated artificial basilar membrane has a property as a mechanical frequency analyzer.

Precise Position Control of a Linear Stage with I/Q heterodyne Interferometer Feedback

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, J.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1142-1146
    • /
    • 2004
  • The ultra precision linear stage is an essential device in the fields of MEMS and Bio technology. A piezo electric motor is widely used for its better linear characteristics, faster response time, and smaller size than conventional electro-magnetic actuator. We develop a new inchworm type motor to implement an actuator-integrated a long stroke linear stage which can move fast. To implement a servo system, we use a heterodyne interferometer as a position sensor, and we propose a new measurement technique using I/Q demodulator, and we propose a counting method to measure the position of fast moving object with low cost circuitry. The characteristics of the actuator and servo system are evaluated by measuring its displacement with a commercial laser interferometer.

  • PDF