• Title/Summary/Keyword: laser device

Search Result 824, Processing Time 0.03 seconds

Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature (Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화)

  • Choi, Se-Weon
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.642-648
    • /
    • 2021
  • The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 ℃ for 6 h, followed by water cooling, and samples were artificially aged in air at 180 ℃ and 220 ℃ for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 ℃ and above 300 ℃, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 ℃ and 400 ℃, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 ℃ and 400 ℃ was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.

Measurement methodology for the alignment accuracy of wafer stepper (웨이퍼 스텝퍼의 정렬정확도 측정에 관한 연구)

  • Lee, Jong-Hyun;Jang, Won-Ick;Lee, Yong-Il;Kim, Doh-Hoon;Choi, Boo-Yeon;Nam, Byung-Ho;Kim, Sang-Cheol;Kim, Jin-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.150-156
    • /
    • 1994
  • To meet the process requirement of semiconductor device manufacturing, it is necessary to improve the alignment accuracy in exposure equipments. We developed the excimer laser stepper and will describe the methodology for alignment measurement and experimental results. Our wafer alignment system consists of off-axis optics, TTL(Through The Lens) optics and high precision stage. Off-axis alignment utilizes the image processing and /or diffraction from thealign marks of off-centered chip area. On the other hand, TTL alignment can be used for the die-by-die alignment using dual beam interferometry. When only off-axis alignment was used, the experimental alignment error(lml+3 .sigma. ) was 0.26-0.29 .mu. m, and will be reduced down to 0.15 .mu. m by adding TTL alignment.

  • PDF

Factors Influencing Edge Dendritic Plating of Steel Sheet in the Electro-Galvanizing Line

  • Du-Hwan Jo;Moonjae Kwon;Doojin Paik;Myungsoo Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.215-220
    • /
    • 2024
  • Recently, the demand for Zn-Ni electrogalvanized steel sheets for home appliances and automobiles is increasing. Products should have a thick plating (30 to 40 g/m2) on both side with a thin thickness (≤ 0.8 mm) and the highest surface quality. By a high current density operation, current is concentrated in the edge part of the steel sheet, resulting in large surface dent defects due to dendritic plating. This can lead to a low productivity due to low line speed operation. To solve this problem, this study aimed to identify factors influencing dendritic plating. A cylindrical electroplating device was manufactured. Effects of cut edge shape and thickness of steel plate, current density, temperature, flow rate, electrolyte concentration, and pH on dendrite generation of Zn-Ni electroplating were examined. To investigate effect of edge shape of the steel sheet, the steel sheet was manufactured using three processing methods: shearing, polishing after shearing, and laser. Relative effects thickness and cut edge processing methods of the steel plate, current density, temperature, flow rate, electrolyte concentration, and pH of plating solution on dendrite plating were investigated. To prevent dendrite plating, an edge mask was manufactured and its application effect was investigated.

Improvement of the Surface Roughness of a 3D Stereolithographic Part for a Molded Interconnect Device

  • Jeong Beom Ko;Hyeon Beom Kim;Young Jin Yang
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.211-219
    • /
    • 2024
  • 3D printing technology has created a paradigm shift in industries by achieving breakthrough innovations and enabling the fabrication of complex products. However, 3D printed parts are inferior in terms of their strength and surface quality compared to parts fabricated by conventional manufacturing methods. This study aims to improve the surface roughness of stereolithographic parts by experimental analysis of the generated area error. A photocurable polymer material was used for fabrication, and the effect of important parameters, such as the material viscosity, printing speed, pneumatic pressure, UV intensity, and pattern spacing, on the surface roughness were analyzed. The results showed that a high-viscosity (12,000 cP) thixotropic material formed a constant pattern with an aspect ratio of 1:1, and the pattern shape was maintained after printing. A pattern with a minimum thickness of 145 ㎛ was formed at a printing speed of 70 mm/s and a pneumatic pressure of 20 kPa. These parameters were found to be suitable for low surface roughness. A UV laser at an intensity of 10 ~ 30 mW/cm2 was used to form a smooth surface at low curing intensities. Moreover, it was seen that with a pattern spacing of 110 ~ 130 ㎛, a stereolithographic part with a low surface roughness of Ra 1.29 ㎛ could be fabricated.

Microtube Light-Emitting Diode Arrays with Metal Cores

  • Tchoe, Youngbin;Lee, Chul-Ho;Park, Junbeom;Baek, Hyeonjun;Chung, Kunook;Jo, Janghyun;Kim, Miyoung;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.287.1-287.1
    • /
    • 2016
  • Three-dimensional (3-D) semiconductor nanoarchitectures, including nano- and micro- rods, pyramids, and disks, are emerging as one of the most promising elements for future optoelectronic devices. Since these 3-D semiconductor nanoarchitectures have many interesting unconventional properties, including the use of large light-emitting surface area and semipolar/nonpolar nano- or micro-facets, numerous studies reported on novel device applications of these 3-D nanoarchitectures. In particular, 3-D nanoarchitecture devices can have noticeably different current spreading characteristics compared with conventional thin film devices, due to their elaborate 3-D geometry. Utilizing this feature in a highly controlled manner, color-tunable light-emitting diodes (LEDs) were demonstrated by controlling the spatial distribution of current density over the multifaceted GaN LEDs. Meanwhile, for the fabrication of high brightness, single color emitting LEDs or laser diodes, uniform and high density of electrical current must be injected into the entire active layers of the nanoarchitecture devices. Here, we report on a new device structure to inject uniform and high density of electrical current through the 3-D semiconductor nanoarchitecture LEDs using metal core inside microtube LEDs. In this work, we report the fabrications and characteristics of metal-cored coaxial $GaN/In_xGa_{1-x}N$ microtube LEDs. For the fabrication of metal-cored microtube LEDs, $GaN/In_xGa_{1-x}N/ZnO$ coaxial microtube LED arrays grown on an n-GaN/c-Al2O3 substrate were lifted-off from the substrate by wet chemical etching of sacrificial ZnO microtubes and $SiO_2$ layer. The chemically lifted-off layer of LEDs were then stamped upside down on another supporting substrates. Subsequently, Ti/Au and indium tin oxide were deposited on the inner shells of microtubes, forming n-type electrodes of the metal-cored LEDs. The device characteristics were investigated measuring electroluminescence and current-voltage characteristic curves and analyzed by computational modeling of current spreading characteristics.

  • PDF

Spatially-resolved Photoluminescence Studies on Intermixing Effect of InGaAs Quantum Dot Structures Formed by AlAs Wet Oxidation and Thermal Annealing (AlAs 습식산화와 열처리로 인한 InGaAs 양자점 레이저 구조의 Intermixing효과에 관한 공간 분해 광학적 특성)

  • Hwang J.S.;Kwon B.J.;Kwack H.S.;Choi J.W.;Choi Y.H.;Cho N.K.;Cheon H.S.;Cho W.C.;Song J.D.;Choi W.J.;Lee J.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2006
  • Optical characteristics of InGaAs quantum dot (QD) laser structures with an Al native oxide (AlOx) layer as a current-blocking layer were studied by means of photoluminescence (PL), PL excitation, and spatially-resolved micro-PL techniques. The InGaAs QD samples were first grown by molecular-beam epitaxy (MBE), and then prepared by wet oxidation and thermal annealing techniques. For the InGaAs QD structures treated by the wet oxidation and thermal annealing processes, a broad PL emission due to the intermixing effect of the AlOx layer was observed at PL emission energy higher than that of the non-intermixed region. We observed a dominant InGaAs QD emission at about 1.1 eV in the non-oxide AlAs region, while InGaAs QD-related emissions at about 1.16 eV and $1.18{\sim}1.20eV$ were observed for the AlOx and the SiNx regions, respectively. We conclude that the intermixing effect of the InGaAs QD region under an AlOx layer is stronger than that of the InGaAs QD region under a non-oxided AlAs layer.

Performance Improvement of ZnO Thin Films for SAW Bandpass Filter (SAW 대역 통과 필터용 ZnO 박막의 특성 개선 연구)

  • Lee, Seung-Hwan;Kang, Kwang-Yong;Yu, Yun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1219-1227
    • /
    • 2014
  • For development of the surface acoustic wave bandpass filter(SAW-BPF), we fabricated the high quality ZnO thin films through the step-by-step(double) deposition using two different deposition methods which are pulsed laser deposition(PLD) and RF sputtering techniques. The second growth of ZnO thin films was completed by RF sputtering method on the first ZnO thin films pre-deposited by PLD method. The characteristics of ZnO thin films were analyzed by XRD, SEM and AFM systems. The FWHM of ${\omega}$-scan analysis and the minimum RMS value of surface roughness of step-by-step grown ZnO thin films were $0.79^{\circ}$ and 1.108 nm respectively. As a result, the crystallinity and the preferred orientation of the grown ZnO thin films were kept good quality and the surface roughnesses of those were improved by post-annealing process as comparison with ZnO thin film fabricated by the conventional PLD technique only. Using these proposed ZnO thin films, we demonstrated the RF device such as SAW-BPF, built by the proposed ZnO thin films, shows that it has the bandwidth of 2.98 MHz and the insertion loss of 36.5 dB at the center frequency of 260.8 MHz, respectively.

A Study on the Gamut Mapping Method of the Wide Gamut Display Device (광 색역 디스플레이 장치의 색역 사상에 관한 연구)

  • Um Jinsub;Shin Yoonchol;Kim Moonchol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.69-80
    • /
    • 2005
  • In these days, the technology development of the imaging/optic industry and the digital broadcasting replace the classic CRT with the new display devices that is getting slimmer and larger. Especially, when the general TV signal is applied directly to the wide gamut display using LED or laser, which can display higher chromatic colors that can't be reproduced on CRT, the color distortion occurs and it causes serious problems. Thus, in this paper the gamut mapping is studied, which gets rids of the color distortion and utilizes the wider color gamut than that of the CRT sufficiently. In the gamut mapping the general mapping concept is the increasement of the chroma on the same hue plane but it causes the over chromatic enhancement. So, the vector mapping, which increases the lightness md the chroma at the same time, is proposed to prevent the side effect. In the vector mapping the chromaticity is maintained constantly, hence the image can be seen more natural than that of the chroma mapping. By using the gamut fitting, it is compensated that the tone disappearance or the contour effect that is arose from the geometric properties of the input and the output color gamut. These gamut mapping and gamut fitting can prevent the color distortion and reproduce the natural image on the wide gamut displays.

Optical System Design for Real-Time 3-Dimension Ophthalmoscope (실시간 3차원 검안경의 광학설계)

  • Lee, Soak-Hee;Yang, Yun-Sik;Choe, Oh-Mok;Sim, Sang-Hyun;Doo, Ha-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • The display technology on the retina is the key role in inspecting the condition of the patients. 2-dimensional retina image is widely used in the eye examination as of today. Recently, 3-dimensional retina image ones have been introduced to this area, but the quality of the image is not fully satisfied to the operator. For the purpose of developing 3-D retina imaging instrument, the optimization of a 3-D retina imaging system using Code-V tool was investigated in this thesis. He-Ne laser having the wavelength 632.8 nm was used to make a power source to detect the retina. Several lenses and mirrors installed on sledge which were developed to perform focus control on 3-D device were designed to make a beam focusing and direct line. Polygon scanner having 24 mirror facets and galvanometer making tilting movement were utilized to make a 2-D laser plane. Also, design of eye ball had been fulfilled to see the focus of the 2-D plane. Reflected ray from retina detected on the sensor array with the same path. All cognitive components were optimized for aberration correction in order to focus on retina. Results of optimization were compared to those of initial designed optics system. On the basis of above results, the result of third aberration has been corrected to stable values to the optical system. MTF evaluating the resolution of an image has been closely correlated to the diffraction limit and PSF indicating the strength distribution of an image has shown the SR value as 0.9998 having high performance. The possibility of new and powerful 3-D retina image instrument was verified by simulating each component of the instrument by Code-V.

  • PDF

Development of 3D Printing System for Human Bone Model Manufacturing Using Medical Images (의료 영상을 이용한 인체 골 모형 제작의 3차원 프린팅 시스템 개발)

  • Oh, Wang-Kyun
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.433-441
    • /
    • 2017
  • The 3D printing selective laser sintering (SLS) and stereo lithography apparatus (SLA) method used for bone model production has good precision and resolution, but the printers are expensive and need professional knowledge for operation. The program that converts computed tomography digital imaging and communications in medicine (DICOM) file into STL (stereolithography) file is also expensive so requesting 3D printing companies takes a lot of time and cost, which is why they are not generally utilized in surgery. To produce bone models of fractured patients, the use of 3D imaging conversion program and 3D printing system should be convenient, and the cost of device and operation should be low. Besides, they should be able to produce big size bone models for application to surgery. Therefore, by using an fused deposition modeling (FDM) method 3D printer that uses thermoplastic materials such as DICOM Viewer OsiriX and plastic wires, this study developed 3D printing system for Fracture surgery Patients customized bone model production for many clinics to use for surgery of fracture patients by universalizing with no limit in printing sizes and low maintenance and production cost. It is expected to be widely applied to the overall areas of orthopedics' education, research and clinic. It is also expected to be conveniently used in not only university hospitals but also regular general hospitals.