• 제목/요약/키워드: laser beam

검색결과 2,052건 처리시간 0.022초

탄소계 경질 박막의 연구 및 산업 적용 동향 (Trend in Research and Application of Hard Carbon-based Thin Films)

  • 이경황;박종원;양지훈;정재인
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석 (Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images)

  • 주상규;홍채선;박희철;안종호;신은혁;신정석;김진성;한영이;임도훈;최두호
    • Radiation Oncology Journal
    • /
    • 제28권3호
    • /
    • pp.155-165
    • /
    • 2010
  • 목 적: 4-dimensional computed tomography (4DCT) 영상과 on board imaging (OBI) 및 real time position management (RPM) 장치로 매 회 치료 시마다 얻은 호흡연동 직각 kilovolt (KV) 준비 영상(gated orthogonal kilovolt setup image)을 이용해 간암 환자를 치료하는 동안 발생하는 종양 위치의 불확실성을 평가하고자 했다. 대상 및 방법: 3차원입체조형치료가 예정된 20명의 간암 환자를 대상으로 RPM과 전산화단층촬영모의치료기를 이용해 치료계획용 4DCT를 시행했다. 표적 근처에 위치한 간동맥화학색전술 후 집적된 리피오돌(lipiodol) 혹은 횡격막을 종양의 위치 변이를 측정하는 표지자로 선택했다. 표지자의 위치 차이를 이용해 온라인 분할간 및 분할중 내부 장기 변이와 움직임 진폭을 측정했다. 측정된 자료의 정량적 평가를 위해 통계 분석을 실시했다. 결 과: 20명 환자로부터 측정된 표지자의 분할간변이의 중앙값은 X (transaxial), Y (superior-inferior), Z (anterior-posterior) 축에서 각각 0.00 cm (범위, -0.50~0.90 cm), 0.00 cm (범위, -2.4~1.60 cm), 0.00 cm (범위, -1.10~0.50 cm) 였다. 4명의 환자에서 X, Y, Z축 중 하나 이상에서 0.5 cm를 초과하는 변이가 관찰되었다. 4DCT와 호흡연동 직각 준비 영상으로부터 얻은 표적의 움직임 진폭의 차이는 X, Y, Z 축에서 각각 중앙값이 -0.05 cm (범위, -0.83~0.60 cm), -0.15 cm (범위, -2.58~1.18 cm), -0.02 cm (범위, -1.37~0.59 cm) 였다. 두 영상간 표적의 움직임 진폭 차이가 1 cm를 초과하는 환자가 Y축 방향으로 3명 관찰되었으며, 0.5 cm 초과 1 cm 미만의 차이를 보이는 환자도 Y축과 Z축 방향을 합쳐 5명 관찰되었다. 분할중 표지자 위치 변이의 중앙값은 X, Y, Z축에서 각각 0.00 cm (범위, -0.30~0.40 cm), -0.03 cm (범위, -1.14~0.50 cm), 0.05 cm (범위, -0.30~0.50 cm)였으며 2명의 환자에서 1 cm를 초과하는 변이가 Y축 방향으로 관찰되었다. 결 론: 4DCT와 호흡연동 직각 KV 준비 영상으로 얻은 표지자의 분할간, 분할중 및 움직임 진폭에서 큰 변이가 관찰되었다.