• Title/Summary/Keyword: laser applications

Search Result 828, Processing Time 0.036 seconds

Laser Cleaning : Introduction and Applications

  • Lee, Jong-Myoung;Ken Watkins
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.2-11
    • /
    • 2000
  • Laser cleaning has begun to attract a considerable amount of interest recently as a new cleaning technique among scientists and engineers. The unique characteristics of laser cleaning are currently finding successful applications in industry, in medicine as well as in the world of art conservation. This paper takes an overview of the laser cleaning technique itself including basic principles and characteristics, and provides an account of current trends especially with regard to practical applications. Experience with its successful applications in various fields shows that laser cleaning may be about to emerge as a real alternative to conventional cleaning methods.

  • PDF

Laser Process of Polymer Micro Fluidic Devices (레이저 가공 폴리머 마이크로 유체 장치)

  • Kim, Joo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.129-137
    • /
    • 2006
  • Polymer micro-fluidic devices were fabricated with laser processes. A UV laser and a femto laser were used to machine polymer micro-fluidic structures directly. This laser direct machining process suits the need of rapid prototyping, as in many applications changes from the original design are often required. As examples, two polymer micro-systems were developed: a micro-check valve and a micro diffuser pump. The micro fluidic devices can be applied for many applications such as clinical diagnostics and drug delivery. Advantages and disadvantages using polymers as a material for micro-fluidic applications are discussed.

Fiber Laser Welding in the Car Body Shop - Laser Seam Stepper versus Remote Laser Welding -

  • Kessler, Berthold
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • The excellent beam quality of high power fiber lasers are commonly used for remote welding applications in body job applications. The Welding speed and productivity is unmatched with any other welding technology including resistance spot welding or traditional laser welding. High tooling cost for clamping and bulky safety enclosures are obstacles which are limiting the use. With the newly developed Laser stitch welding gun we have an integrated clamping in the process tool and the laser welding is shielded in a way that no external enclosure is needed. Operation of this laser welding gun is comparable with resistance spot welding but 2-times faster. Laser stitch welding is faster than spot welding and slower than remote welding. It is a laser welding tool with all the laser benefits like welding of short flanges, weld ability of Ultra High Strength steel, 3 layers welding and Aluminium welding. Together with low energy consumption and minimum operation cost of IPG fiber laser it is a new and sharp tool for economic car body assembly.

Tribological performance of the laser surface treated CrZrSiN thin films

  • Kim, DongJun;La, JoungHyun;Lee, SangYul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.141-142
    • /
    • 2012
  • Recently, surface texturing by atmospheric laser processing has been received lots of attention to improve the tribological performance of various surfaces and this laser texturing of surfaces could be considered in a large extent to improve tribological performance of PVD coated surface. Surface texturing could be performed by various manufacturing techniques such as indentation with hard materials, ion etching, abrasive jet machining, lithography, and Laser Surface Texturing (LST). Out of all these techniques, however it is generally accepted that laser surface texturing (LST) by atmospheric laser processing offers the most promising process as LST is very fast, environmentally-friendly, easy to control the shape and size of the microdimples. In this work various preliminary experimental results from the laser texturing on the PVD-coated steel substrate will be presented. Our results indicated that laser texturing definitely affect the tribological performance of the surfaces and the size as well as pattern type of laser texturing are one of the key factors. From the wear tests against an alumina counterpart ball at room temperature under oil-lubricated condition, laser surface texturing on the CrZrSiN films reduced the friction coefficients by approximately more than 5 times in the case of narrow patterned surfaces.

  • PDF

Laser Understandings and Prospects of its Applications in Medicine (레이저의 이해와 그 의학적 응용에 관한 고찰)

  • 김현수;김귀언;추성실
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.19-37
    • /
    • 1995
  • The use of lasers in medicine has opened up entirely new fields of therapy and diagnosis. The process in biotechnical applications of laser is basically different from traditional one in other technical field because of critical account to the human body. This paper surveys the principle of biomedical applications as well as possible future developments in laser medicine. In particular, the following subjects are extensively presented : 1) laser-tissue interaction, 2) therapeutic, and diagnostic technique, 3) laser op tical fiber for medicine, and 4) laser safety.

  • PDF

Numerical simlation of nanosecond pulsed laser ablation in air (대기중 나노초 펄스레이저 어블레이션의 수치계산)

  • 오부국;김동식
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

Development of a Nd;YAG Welding System and Its Applications (Nd:YAG 레이저 응접기의 국산화개발 및 응용)

  • 김철종;이종민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.06a
    • /
    • pp.107-115
    • /
    • 1989
  • A 200 W industrial Nd:YAG laser was developed and its weding applications were investigated. The important factors in designing of an industrial Nd:YAG laser were analyzed and special sedign features were explained. Also, the performance of laser weldings of Zircaloy-4, stainless steel and fine thermocouples was presented.

  • PDF

Numerical Study of a Novel Bi-focal Metallic Fresnel Zone Plate Having Shallow Depth-of-field Characteristics

  • Kim, Jinseob;Kim, Juhwan;Na, Jeongkyun;Jeong, Yoonchan
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.147-152
    • /
    • 2018
  • We propose a novel bi-focal metallic Fresnel zone plate (MFZP) with shallow depth-of-field (DOF) characteristics. We design the specific annular slit patterns, exploiting the phase-selection-rule method along with the particle swarm optimization algorithm, which we have recently proposed. We numerically investigate the novel characteristics of the bi-focal MFZP in comparison with those of another bi-focal MFZP having equivalent functionality but designed by the conventional multi-zone method. We verify that whilst both bi-focal MFZPs can produce dual focal spots at $15{\mu}m$ and $25{\mu}m$ away from the MFZP plane, the former exhibits characteristics superior to those of the latter from the viewpoint of axial resolution, including the axial side lobe suppression and axial DOF shallowness. We expect the proposed bi-focal MFZP can readily be fabricated with electron-beam evaporation and focused-ion-beam processes and further be exploited for various applications, such as laser micro-machining, optical trapping, biochemical sensing, confocal sensing, etc.