• 제목/요약/키워드: laser ablation plume

검색결과 38건 처리시간 0.025초

대기중 나노초 펄스레이저 어블레이션의 수치계산 (Numerical simlation of nanosecond pulsed laser ablation in air)

  • 오부국;김동식
    • 한국레이저가공학회지
    • /
    • 제6권3호
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

압밀 금속 마이크로 입자의 펄스 레이저 ABLATION에 의한 나노입자 합성 (Nanoparticle Synthesis by Pulsed Laser Ablation of Consolidated Microparticles)

  • 장덕석;오부국;김동식
    • 한국레이저가공학회지
    • /
    • 제5권2호
    • /
    • pp.31-38
    • /
    • 2002
  • This paper describes the process of nanoparticle synthesis by laser ablation of consolidated microparticles. We have generated nanoparticles by high-power pulsed laser ablation of Al, Cu and Ag microparticles using a Q-switched Nd:YAG laser (wavelength 355 nm, FWHM 5 ㎱, fluence 0.8∼2.0 J/㎠). Microparticles of mean diameter 18∼80 ㎛ are ablated in the ambient air The generated nanoparticles are collected on a glass substrate and the size distribution and morphology are examined using a scanning electron microscope and a transmission electron microscope. The effect of laser fluence and collector position on the distribution of particle size is investigated. The dynamics of ablation plume and shock wave is analyzed by monitoring the photoacoustic probe-beam deflection signal. Nanosecond time-resolved images of the ablation process are also obtained by laser flash shadowgraphy. Based on the experimental results, discussions are made on the dynamics of ablation plume.

  • PDF

열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산 (Numerical computation of pulsed laser ablation phenomena by thermal mechanisms)

  • 오부국;김동식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

레이저 용삭법에 의한 플라즈마의 진전 모델링 (Modelling of Carbon Plume by Laser-ablation Method)

  • 소순열;이진
    • 한국전기전자재료학회논문지
    • /
    • 제19권5호
    • /
    • pp.492-497
    • /
    • 2006
  • The study on laser-ablation plasmas has been strongly interested in fundamental aspects of laser-solid interaction and consequent plasma generation. In particular, this plasma has been widely used for the deposition of thin solid films and applied to the semiconductors and insulators. In this paper, we developed and discussed the generation of carbon ablation plasmas emitted by laser radiation on a solid target, graphite. The progress of carbon plasmas by laser-ablation was simulated using Monte-Carlo particle model under the pressures of vacuum, 1 Pa, 10 Pa and 66 Pa. At the results, carbon particles with low energy were deposited on the substrate as the pressure becomes higher However, there was no difference of deposition distributions of carbon particles on the substrate regardless of the pressure.

Ar 플라즈마 상태에서 PLAD법에 의한 탄소 입자의 운동 모델링 (Modeling of Carbon Plume in PLAD Method Assisted by Ar Plasmas)

  • 소순열;임장섭
    • 조명전기설비학회논문지
    • /
    • 제19권4호
    • /
    • pp.24-31
    • /
    • 2005
  • 고본 논문에서는 시뮬레이션 기법을 통하여 RAD법을 Ar 플라즈마 상태에서 구동하도록 설정하였다. 이것은 플라즈마를 구성하는 요소들이 PLAD법에 의해 방출된 각 입자들에 어떠한 영향을 미치는가를 확인하고자 하였으며, 특히 방출된 입자들의 운동 에너지 및 밀도를 제어할 수 있을 것으로 기대되어지기 때문이다. Ar 플라즈마의 방전 공간내에서, RAD법에 의한 전자, 탄소 이온$(C^+)$ 및 탄소 원자(C)의 운동 과정을 보다 정확히 계산하기 위해서 입자 및 유체 모델을 융합한 1차원 하이브리드 모델을 계발하였다. 그 결과 쉬스 내에 형성되는 전위를 제어함으로써 기판에 도달하는 $C^+$의 밀도 및 에너지를 제어할 수 있는 것으로 기대되어졌다.

Optical Emission Studies of a Plume Produced by Laser Ablation of a Graphite Target in a Nitrogen Atmosphere

  • Park, Hye-Sun;Nam, Sang-Hwan;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.620-624
    • /
    • 2004
  • Optical emission studies were performed to investigate thermal and dynamical properties of a plume produced by laser ablation of a graphite target in a nitrogen atmosphere. Experimental spectra of $C_2(d^3{\Pi}_g{\to}a^3{\Pi}_u$, ${\Delta}_V$=1) and CN ($B^2{\Sigma}^+{\to}X^2{\Sigma}^+,{\Delta}_V=0)$ were simulated to obtain the vibrational and rotational temperatures of the electronically excited species at various laser fluences and distances from the target. The spectroscopic temperatures of both molecules were found to be nearly independent of the laser fluence. The temperature of CN molecules was peaked in the middle of the plume while that of $C_2$decreased with increase in the distance. At a given distance, the temperature of CN molecules was clearly higher than that of $C_2$.

Mass Spectrometric Study of Carbon Cluster Formation in Laser Ablation of Graphite at 355 nm

  • Koo, Young-Mi;Choi, Young-Ku;Lee, Kee-Hag;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.309-314
    • /
    • 2002
  • The ablation dynamics and cluster formation of $C_n^+$ ions ejected from 355 nm laser ablation of a graphite target in vacuum are investigated using a reflectron time-of-flight (RTOF) mass spectrometer. At low laser fluence, odd-numbered cluster ions with $3{\leq}n{\leq}15$ are predominantly produced. Increasing the laser fluence shifts the maximum size distribution towards small cluster ions, implying the fragmentation of larger clusters within the hot plume. The temporal evolution of $C_n^+$ ions was measured by varying the delay time of the ion extraction pulse with respect to the laser irradiation, providing significant information on the characteristics of the ablated plume. Above a laser fluence of $0.2J/cm^2$ , large cluster ions ($n{\geq}30$) are produced at relatively long delay times, indicating that atoms or small carbon clusters aggregate during plume propagation. The dependence of the intensity of ablated $C_n^+$ ions on delay time after laser irradiation shows that the most probable velocity of each cluster ion decreases with cluster size.

Ar 플라즈마 상태에서 운동하는 탄소 입자 모델링 (Carbon Plume Modeling Assisted by Ar Plasmas)

  • 소순열;이진;정해덕;여인선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2163-2165
    • /
    • 2005
  • A pulsed laser ablation deposition (PLAD) technique has been used for producing fine particle as well as thin film at relatively low substrate temperatures. However, in order to manufacture and evaluate such materials in detail, motions of plume particles generated by laser ablation have to be understood and interactions between the particles by ablation and gas plasma have to be clarified. Therefore, this paper was focused on the understanding of plume motion in laser ablation assisted by Ar plasma at 50(mTorr). Two-dimensional hybrid model consisting of fluid and particle models was developed and three kinds of plume particles which are carbon atom (C), ion $(C^+)$ and electron were considered in the calculation of particle method It was obtained that ablated $C^+$ was electrically captured in Ar plasmas by strong electric field (E). The difference between motions of the ablated electrons and $C^+$ made E strong and the collisional processes active.

  • PDF

Measurement of excited species in discharges using Laser Absorption spectroscopy

  • Sakai, Yosuke
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.5-8
    • /
    • 2000
  • The population density of excited species in dc, rf and laser ablation plume plasmas has been measured using laser absorption spectroscopy. It was shown that, when the plasma was modulated by on and off with, the sensitivity and signal to noise (S/N) ratio became high. For example, the atomic O(3$^{5}$ S$^{o}$ $_2$) Population density, No* in $O_2$/He mixtures was obtained by the highest S/N ratio at a frequency of 2.7kHz. In a 20Torr room air, the lowest No* level to be detectable was shown to be an order of 10$^{7}$ cm$^{-3}$ . The population densities of resonance Ar(1S$_2$) and Xe(1S$_4$) levels were also measured in barrier discharges and laser ablation plasmas.

  • PDF

Characterization of SnO2 thin films grown by pulsed laser deposition under transverse magnetic field

  • Park, Jin Jae;Kim, Kuk Ki;Roy, Madhusudan;Song, Jae Kyu;Park, Seung Min
    • Rapid Communication in Photoscience
    • /
    • 제4권3호
    • /
    • pp.50-53
    • /
    • 2015
  • $SnO_2$ thin films were deposited on fused silica substrate by pulsed laser deposition under transverse magnetic field. We have explored the effects of magnetic field and ablation laser wavelength on the optical properties of laser-induced plasma plume and structural characteristics of the deposited $SnO_2$ films. Optical emission from the plume was monitored using an optical fiber to examine the influence of magnetic field on the population of the excited neutral and ionic species and their decay with times after laser ablation. Also, we employed photoluminescence, x-ray diffraction, and UV-Vis absorption to characterize $SnO_2$ films.