• Title/Summary/Keyword: large-span space structures

Search Result 35, Processing Time 0.022 seconds

Inelastic Nonlinear Analysis of Arch Truss and Space Truss Structures (아치 트러스 및 공간 트러스 구조의 비탄성 비선형 거동해석)

  • Kim, Kwang-Joong;Jung, Mi-Roo;Kim, Yeon-Tae;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.47-58
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structural system. With this character of the spatial structure, generally long span is used. As a result, large deflection is accompanied from the general frame. the structure is apt to result in a large deflection even though this structure experiences a small displacement in absence. Usually, nonlinear analysis in numerical analysis means geometric nonlinearity and material nonlinearity and complex nonlinearity analysis considers both of them. In this study, nonlinear equation of equilibrium considering geometric nonlinearity as per finite element method was applied and also considered the material nonlinearity using the relation of stress-strain in element. It is applied to find unstable result for tracing load-deflection curve in the numerical analysis tech. especially Arc-length method, and result of the analysis was studied by ABAQUS a general purpose of the finite element program. It is found that the present analysis predicts accurate nonlinear behavior of plane and space truss.

  • PDF

A Study on the Compression Strength of Structural Steel Tube Applied in Spatial Structure (공간구조에 적용되는 일반구조용 강관의 압축내력에 관한 연구)

  • Baek, Ki-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.83-93
    • /
    • 2008
  • Space truss is a rational system which forming large span in spatial structure and the steel tube is used well as a structure member in truss system. This study includes coupon test and Stub-column compression test on the structural steel tube. The compression test of Stub-column was performed to characterize and quantify the material characteristic and strength of column. In this study, we also researched the matter of compatibility, in which we compared the experiment formula and the abstract formula by the application of the LSD standard formula, SSRC and ECCS multiple column curve.

  • PDF

Acoustic Characteristics of Sound Field in Partially Opened Rooms -Emphasis on Vertical Coupling of Diffuse and Free Field- (실내공간의 부분적 개방에 따른 음향특성변화 II -확산음장과 자유음장의 수직적 결합을 중심으로-)

  • Jeong, Dae-Up;Choi, Young-Ji
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.75-82
    • /
    • 2007
  • The present work measured and analyzed changes in the acoustics of a sound field which has a retractable ceiling. An 1/20 scale model of an openable space was built and measurement was carried out by varying the opened area of a ceiling. The most widely used room acoustic and design parameters, RT, EDT, and D50 were investigated. The results suggest that the use of RT as an acoustic design parameter may not be proper in an openable space and further it is likely to mislead the initial acoustic design of such spaces. It is mainly due to the characteristics of RT in which non-exponential decay processes are linearly fitted. Early decay times were found to be decreased in proportion to increaing the ratio of opened area. D50, an index of speech intelligibility, was effectively shows the influence of openings on the acoustics. It is also found that EDT and D50 at the seats, not directly exposed to the opened part of a ceiling, were almost linearly decreased in proportion to the ratio of opened area, while little influence was found for the opening ratio larger than 40% at the directly exposed seats to the opened part of a ceiling.

  • PDF

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line

  • Yang, Xiongjun;Lei, Ying;Liu, Lijun;Huang, Jinshan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.425-434
    • /
    • 2020
  • Practical non-synoptic fluctuating wind often exhibits nonstationary features and should be modeled as nonstationary random processes. Generally, the coherence function of the fluctuating wind field has time-varying characteristics. Some studies have shown that there is a big difference between the fluctuating wind field of the coherent function model with and without time variability. Therefore, it is of significance to simulate nonstationary fluctuating wind field with time-varying coherent function. However, current studies on the numerical simulation of nonstationary fluctuating wind field with time-varying coherence are very limited, and the proposed approaches are usually based on the traditional spectral representation method with low simulation efficiency. Especially, for the simulation of multi-variable wind field of large span structures such as transmission tower-line, not only the simulation is inefficient but also the matrix decomposition may have singularity problem. In this paper, it is proposed to conduct the numerical simulation of nonstationary fluctuating wind field in one-spatial dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation efficiency. Finally, the proposed method is applied to simulate the longitudinal nonstationary fluctuating wind velocity field along the transmission line to illustrate its performances.

Analysis of Structural Types and Design Factors for Fruit Tree Greenhouses (과수재배용 온실의 구조유형과 설계요소 분석)

  • Nam, Sang-Woon;Ko, Gi-Hyuk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In order to provide basic data for the development of a controlled environment cultivation system and standardization of the structures, structural status and improvement methods were investigated for the fruit tree greenhouses of grape, pear, and peach. The greenhouses for citrus and grape cultivation are increasing while pear and persimmon greenhouses are gradually decreasing due to the advance of storage facilities. In the future, greenhouse cultivation will expand for the fruit trees which are more effective in cultivation under rain shelter and are low in storage capability. Fruit tree greenhouses were mostly complying with standards of farm supply type models except for a pear greenhouse and a large single-span peach greenhouse. It showed that there was no greenhouse specialized in each species of fruit tree. Frame members of the fruit tree greenhouses were mostly complying with standards of the farm supply type model or the disaster tolerance type model published by MIFAFF and RDA. In most cases, the concrete foundations were used. The pear greenhouse built with the column of larger cross section than the disaster tolerance type. The pear greenhouse had also a special type of foundation with the steel plate welded at the bottom of columns and buried in the ground. As the results of the structural safety analysis of the fruit tree greenhouses, the grape greenhouses in Gimcheon and Cheonan and the peach greenhouses in Namwon and Cheonan appeared to be vulnerable for snow load whereas the peach greenhouse in Namwon was not safe enough to withstand wind load. The peach greenhouse converted from a vegetable growing facility turned out to be unsafe for both snow and wind loads. Considering the shape, height and planting space of fruit tree, the appropriate size of greenhouses was suggested that the grape greenhouse be 7.0~8.0 m wide and 2.5~2.8 m high for eaves, while 6.0~7.0 m wide and 3.0~3.3 m of eaves height for the pear and peach greenhouses.