• Title/Summary/Keyword: large-span space structures

Search Result 35, Processing Time 0.021 seconds

Multiple characteristic response damage analysis of large-span space structures based on equivalent damping ratio

  • Wei, Jun;Yang, Qingshun;Zhou, Lexiang;Chen, Fei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Due to the large volume and generally as a public building, the damage of large-span space structures under various non-conventional loads will cause greater economic losses, casualties, and social impacts, etc. Therefore, it is particularly important to evaluate the seismic performance of large-span space structures. This paper taked a multipurpose sports center as an example and considered its synergistic deformation based on the method of equivalent damping ratio. Furthermore, The ABAQUS software was used to analyze the time-history and energy response of the multipurpose sports center under the action of rare earthquakes, and proposed a quantitative damage index to assess the overall damage of the structure. Finally, the research results indicated that the maximum inter-story drift ratio of the multipurpose sports center under the action of rare earthquakes was less than its limit value. The frame beams presented different degrees of damage, but the key members were basically in an elastic state. The bearing capacity did not reach the limit value, which satisfied the intended seismic performance target. This study taked an actual case as an example and proposed a relevant damage evaluation system, which provided some reference for the analysis of the seismic performance of large-span space structures.

The Case Study on the Erection Method of Large Span Structures (대공간 건축물 Erection 공법에 관한 사례 조사 연구)

  • Jung, Hwan-Mok;Lee, Seong-Yeun;Jee, Suck-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.97-104
    • /
    • 2007
  • Recently, the demand of the large span structures has been increasing. The large span structures include such a large scaled structures such as: the shell structure, the space frame structure, the membrane structure and the cable structure, etc. The large span structures are supposed to be confirmed and issued carefully at the initial process of the design besides the construction engineering aspects because of the structural specific cause that should solve and accomodate those large and wide space without columns. In the field of the large span structure construction, the erection construction method has been regarded as a major affected aspects on the construction cost, construction term, and stability. In the field of the large span structure construction, there are various construction method and system could be applied depends on the condition of the construction site and other circumstances such a major construction method as: the element method, the block method, the sliding method, the lift-up method and complexed method, etc. In this study, as the case study of the erection construction method of the large span structures, after survey and study that those existing large span structures construction cases which had applied and adopted the election construction method and analysis and classify into the Uoups by the size, span, ceiling height, structural system in odor to supply and suggest the data for the enhancement and development in the field of the erection construction method as a efficient structural solution of the large span structure construction.

  • PDF

A Study on the Construction Status and the Structural System Features of Wooden Large Space Buildings (대공간 목구조 건축의 건립 현황과 구조시스템 특성 분석)

  • Lee, Juna;Lee, Hyunghoon;Lee, Seong-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.15-24
    • /
    • 2022
  • In this research, the case of modern wooden structures since 1950 with span of 30m or more was investigated and analyzed the construction status and structural planning characteristics of wooden large space architecture. As a result, wooden large space buildings have built around Asia, North America, and Europe, in which cases of ice skating stadiums with span of 30m to 60m were concentrated. In the case of baseball parks and football stadiums, even a span of about 165m was built in a wooden structure. In addition, it was found that the structural systems used in wooden large space structures were a funicular arch and truss structure, in that cases, funicular arch system consisting of radial arrangements was used in the examples exceeded 150m and the two way truss system was also used in long span wooden structures exceeding 100m. As the truss structure with a tie-rod or the flexure+tension structure was partially investigated, it can be seen that various timber structural systems need to be devised and researched. Also, It was investigated that a technique in which some members of the truss are made of steel or a composite member of steel and timber is also possible to develop

Poisson's ratios of fabric materials in use for large-span membrane structures

  • Jianhui Hu;Wujun Chen;Chengjun Gao;Yibei Zhang;Yonglin Chen;Pujin Wang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.543-549
    • /
    • 2024
  • The utilization of the fabric materials for lightweight building structures has attracted considerable attention due to the multiple functions and high strength-to-weight ratio. The mechanical properties of the fabric materials evolve with the loading cycle, especially for the Poisson's ratio that requires the full cyclic strain to determine the accurate values. The digital image correlation method has been justified but needs to meet the flexibility and complexity requirements of the fabric materials. This paper thus proposes a modified digital image correlation method to quantify the Poisson's ratio of fabric materials. To obtain the accurate Poisson's ratio of fabric materials in the cyclic experiments using non-contact measuring method, a speckle generation of the digital image correlation method is implemented to obtain the strain distribution and strain characteristics. The uniaxial cyclic experiments for the fabric materials are carried out in the warp, weft and 45° directions. The digital image correlation photos are taken when the material properties become stable in the cyclic loading. The results show that the strain distributions are non-uniform and dependent on the specimen directions. The reliable Poisson's ratios of the fabric materials in the warp, weft and 45° directions are 0.016, 1.2 and 2.6. The strain asymmetry at the maximum strain position is related with the weaving architecture. These observations and results are indispensable to understand the Poisson's ratios of fabric materials and to guide the proper analysis of the large-span membrane structures.

A Study of Nonlinear Unstable Phenomenon of Framed Space Structures Considering Joint Rigidity (절점 강성을 고려한 공간 구조물의 비선형 불안정 거동에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Hwang, Kyung-Ju;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.87-97
    • /
    • 2003
  • The structural system that discreterized from continuous shells is frequently used to make a large space structures. As well these structures show the unstable phenomena when a load level over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. In our real situation, most structures have semi-rigid joint that has middle characteristic between pin and rigid joint. So the knowledge of semi-rigid joint is very important problem of stable large space structure. And the instability phenemena of framed space structures show a strong non-linearity and very sensitive behavior according to the joint rigidity For this reason In this study, we are investigating to unstable problem of framed structure with semi-rigidity and to grasp the nonlinear instability behavior that make the fundamental collapse mechanism of the large space frame structures with semi-rigid joint, by proposed the numerical analysis method. Using the incremental stiffness matrix in chapter 2, we study instability of space structures.

  • PDF

A study on the static seimic loads for the space structures of beam string structure (장현보구조형식을 가지는 공간구조물의 정적지진하중 평가법에 관한 연구)

  • Kim, Kwang-Il;Jung, Chan-Woo;Kang, Joo-Won
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.127-132
    • /
    • 2008
  • Recent years, the response characteristics of large space structures have been studied. Then, for the large space structures with large rise-span ratio, it is clarified that the anti-symmetric mode are representatively amplified. That means the static seismic load for general ramen structure is not suitable for the space structure. In this paper, we propose static seismic loads for space structures and its concept. And for the space structures of beam string structures, execute the time history analysis and quasi static analysis and compare the results of them. From the results, we can prove the validity of static seismic load for space structure.

  • PDF

A Study on the Unstable behavior According to rise-span ratio of dome type space frame (돔형 공간 구조물의 Rise-span 비에 따른 불안정 거동 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.75-82
    • /
    • 2004
  • Many researcher's efforts have made a significant advancement of space frame structure with various portion, and it becomes the most outsanding one of space structures. However, with the characteristics of thin and long term of spacing, the unstable behavior of space structure is shown by initial imperfection, erection procedure or joint, especially space frame structure represents more. This kind of unstable problem could not be set up clearly and there is a huge difference between theory and experiment. Moreover, the discrete structure such as space frame has more complex solution, this it is not easy to derive the formulation of design about space structure. In this space frame structure, the character of rise-span ratio or load mode is represented by the instability of space frame structure with initial imperfection, and snap-through or bifurcation might be the main phenomenon. Therefore, in this study, space frame structure which has a lot of aesthetic effect and profitable for large space covering single layer is dealt. And because that the unstable behavior due to variation of inner force resistance in the elastic range is very important collapse mechanism, I would like to investigate unstable character as a nonlinear behavior with a geometric nonlinear. In order to study the instability. I derive tangent stiffness matrix using finite element method and with displacement incremental method perform nonlinear analysis of unit space structure, star dome and 3-ring star dome considering rise-span $ratio(\mu}$ and load $ratio(R_L)$ for analyzing unstable phenomenon.

  • PDF

A Study on the Critical Point and Bifurcation According to Load Mode of Dome-Typed Space Frame Structures (돔형 스페이스 프레임 구조물의 하중모드에 따른 분기점 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Lee, Seung-Jae;Kim, Jong-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.121-130
    • /
    • 2011
  • Space frame structures have the advantage of constructing a large space structures without column and it may be considered as a shell structure. Nevertheless, with the characteristics of thin and long term of spacing, the unstable problem of space structure could not be set up clearly, and there is a huge difference between theory and experiment. Therefore, in this work, the tangential stiffness matrix of space frame structures is studied to solve the instability problem, and the nonlinear incremental analysis of the structures considering rise-span ratio(${\mu}$) and the ratio of load($R_L$) is performed for searching unstable points. Basing on the results of the example, global buckling can be happened by low rise-span ratio(${\mu}$), nodal buckling can be occurred by high rise-span ratio(${\mu}$). And in case of multi node space structure applying the ratio of load($R_L$), the nodal buckling phenomenon occur at low the ratio of load($R_L$), the global buckling occur a1 high the ratio of load($R_L$). In case of the global buckling, the load of bifurcation is about from 50% to 70% of perfect one's snap-through load.

Buckling Analysis of the Large Span Spatial Structures by Modal Analysis (Modal Analysis법에 의한 무주대공간 구조물의 좌굴해석)

  • 한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.195-201
    • /
    • 1996
  • This paper is mainly forcused on the application of modal analysis In analyze the geometrically non-linear buckling behaviors of large span spatial structures, and the evaluation of each eigen mode affected post-buckling behaviors and buckling loads. Modal analysis is applied . to derivation of the system matrices transforming actual displacement space into generalized coordinates space represented by coefficients multiplied in the linear combination of eigen modes which are independent and orthogonal each other. By using modal analysis method, it will be expected to save the calculating time by computer extremely. For example, we can obtain the satisfactorily good results by using about 7% of total eigen modes only in case of single layer latticed dome. And we can decrease the possibility of divergence on the bifurcation point in the calculation of post-buckling path. Arc-length method and Newton-Raphson iteration method are used to calculate the nonlinear equilibrium path.

  • PDF

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.