• Title/Summary/Keyword: large-scale systems

Search Result 1,879, Processing Time 0.031 seconds

Overcapacity of Water Treatment Plants in Korea (국내 정수장 과다시설용량 실태 분석)

  • Lee, Sangeun;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.57-67
    • /
    • 2009
  • Under the supply-oriented policy, efficiency and rationale have not been fully considered in planning of water supply facilities in Korea. As a case, this study shows that large-size systems are suffering from overcapacity problem of water treatment plants, and thus discusses what options should be applied to deal with inefficiency. Water demand of large-size systems has suddenly decreased for the last 10 years while water demand has been often assumed to increase at a regular rate in planning of plants according to excess capacity hypothesis. This inconsistency led to a serious overcapacity. In 2006, total excess capacity of nine large-size systems was more than 1.2 times as large as maximum daily demand of total customers in Seoul. However, their options are expected to stay ex post facto. To prepare the risk of overcapacity, and draw large benefits out of the plants, the authors and other professionals in Korea should further discuss the more adaptive method for prediction of water demand, and systems integration between a large-size system and adjoining systems.

A study on the Dynamic analysis of 1/5 scale derailment simulator model (소형 탈선 시뮬레이터 축소모델 동특성 해석에 관한 연구)

  • Lee, Se-Yong;Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.337-342
    • /
    • 2011
  • A roller rig has been widely used in the study about dynamic stability and railway safety. However, the cost for constructing the roller rig and the difficulty in adjusting the design parameters for vehicle systems lead to the development of a small scale simulator which is cheaper than the large scale test systems and easy to control the parameters affecting dynamic characteristics of the railway vehicle. For the operation of the small scale test system called a small scale simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

Characteristic Analysis elf Large Grounding system by Using Reduced Scale Model Method (축소모델 기법을 이용한 대규모 접지계의 특성분석)

  • 장석훈;이재복;명성호;조연규;김점식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.162-167
    • /
    • 2004
  • The scale model grounding systems to study the behavior of grounding system in uniform soils have been designed and fabricated. Constructional details and instrumentation have been discussed. To verify the accuracy of the results obtained from the experimental tests, they have been compared with computer calculation results. Also, in order to assess the effectiveness of bonding two grounding systems, grounding grid conductors which were downsized as a scale factor of 100:1 were analyzed by using the scale model method. A profile of GPR(Grounding Potential Rise) of each case was measured. The scale model grounding system presented in this paper can be valuable tool to analyze the ground potential profile and ground resistance of practical grounding system.

A Requirements Driven System Design Process for a Small System (소규모 시스템의 요건에 의한 설계)

  • Kim, Eui-Jung;Shin, Keun-Ha;Choi, Jae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.69-75
    • /
    • 2001
  • Systems engineering has been utilized in system development primarily for large-scale projects or commercial large-scale systems during the last several decades. We can understand why it would be useful to apply systems engineering to the development of a relatively small system. However, it is difficult to effectively carry out a project due to the complexity in applying the methods of systems engineering. To apply systems engineering to the development of a small system, the system engineering processes should be tailored. We established a requirements driven system design process(RDSDP) that can effectively carry out the system design far a small system. RDSDP is a system design process that treats all the requirements thoroughly and effectively. This is applied by the designer according to a standardized and systematized process during the first phase in design, in which system specifications are made. By using RDSDP, we can affect a reduction of the number of redesign phases in the process of the system design, shorten the period for to make specification, which will then cause the system to succeed in the actual application.

  • PDF

An Economic Assessment of Large-scale Battery Energy Storage Systems in the Energy-Shift Application to Korea Power System (장주기 대용량 전력저장장치의 부하이전에 대한 실계통 적용 경제성 평가 연구)

  • Park, Jong-Bae;Park, Yong-Gi;Roh, Jae-Hyung;Chang, Byung-Hoon;Toon, Yong-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.384-392
    • /
    • 2015
  • This paper presents an economic assessment of large-scale Li-ion battery energy storage systems applied to Korean power system. There are many applications of the battery energy storage systems (BESSs) and they can provide various benefits to power systems. We consider BESSs to the energy time-shift application to Korean power system and evaluate the benefits from the application of BESS in the social perspective. The mixed integer programming (MIP) algorithm is used to resolve the optimal operation schedule of the BESS. The social benefits can include the savings of the fuel cost from generating units, deferral effects of the generation capacity, delay of transmission and distribution infra construction, and incremental CO2 emission cost impacts, etc. The economic evaluation of the BESS is separately applied into Korean power systems of the Main-land and Jeju island to reflect the differences of the load and generation patterns.

NEW PROBES OF INTERGALACTIC MAGNETIC FIELDS BY RADIOMETRY AND FARADAY ROTATION

  • KRONBERG PHILIPP P.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.343-347
    • /
    • 2004
  • The energy injection of galactic black holes (BH) into the intergalactic medium via extragalactic radio source jets and lobes is sufficient to magnetize the IGM in the filaments and walls of Large Scale Structure at < [B] > ${\~}0.l{\mu}G$ or more. It appears that this process of galaxy-IGM feedback is the primary source of IGM cosmic rays(CR) and magnetic field energy. Large scale gravitational infall energy serves to re-heat the intergalactic magnetoplasma in localities of space and time, maintaining or amplifying the IGM magnetic field, but this can be thought of as a secondary process. I briefly review observations that confirm IGM fields around this level, describe further Faraday rotation measurements in progress, and also the observational evidence that magnetic fields in galaxy systems around z=2 were approximately as strong then, ${\~}$10 Gyr ago, as now.

The simulation for error analysis of a large scale laser digitizer system

  • Fujimoto, Ikumatsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.440-445
    • /
    • 1993
  • A two dimensional large scale laser digitizer with a cordless cursor was developed. The coordinate detecting scheme of this digitizer is fundamentally based on the triangulation method, in which two laser-rays are scanned by the rotating plane mirros, reflected backward by the cursor, reflected again by the rotating mirrors, and detected by optical sensors. From angles in which the cursor reflections are detected, we can determine the position of the cursor. But this method involves several problems about optical alignment and its calibration especially when it is applied to a large scale digitizer. In this paper, especially we propose simulation for error analysis with connection to angles measured at five control points which are needed to decide an appropriate model for calculating coordinates and optimal simulation for deciding the position of five control points to give the better coordinate accuracy. In this way, we realized the on-site calibration and on-site insurance of measurement accuracy with our appropriate model for calculating coordinates. The time required for on-site calibration is within 5 minutes and the average accuracy of 4m * 3m digitizer is about .+-.0.12mm.

A study on the supervisory control of digital instrumentation and control system for power plant (발전소 제어용 디지탈 계장제어 시스템의 관리제어에 관한 연구)

  • 권만준;이재혁;김병국;변증남;배병환;박익수;허성광
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.204-208
    • /
    • 1990
  • The digital instrumentation and control system for the large scale system like the power plant must have the form of the heirachical structure. Because most large scale system have many control and process signals and it is distributed in the vade region, it is necessary to partition them into several subsystems. Therefore, the role of SCS(Supervisory Control System) having the functions of controlling and monitoring for the status of subsystems is very important. In this paper, new SCS for the effective control of the large scale system is proposed.

  • PDF

Region Division for Large-scale Image Retrieval

  • Rao, Yunbo;Liu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5197-5218
    • /
    • 2019
  • Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.

Decentralized Load-Frequency Control of Large-Scale Nonlinear Power Systems: Fuzzy Overlapping Approach

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.436-442
    • /
    • 2012
  • This paper develops a design methodology of a decentralized fuzzy load-frequency controller for a large-scale nonlinear power system with valve position limits on governors. The concerned system is locally exactly modeled in Takagi-Sugeno's form. Sufficient design condition for uniform ultimate boundedness of the closed-loop system is derived based on the overlapping decomposition. Convergence of all incremental frequency deviations to zero is also investigated. A simulation result is provided to visualize the effectiveness of the proposed technique.