• 제목/요약/키워드: large-scale structure of universe

검색결과 78건 처리시간 0.027초

A Deep Convolutional Neural Network approach to Large Scale Structure

  • Sabiu, Cristiano G.
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.53.3-53.3
    • /
    • 2019
  • Recent work by Ravanbakhsh et al. (2017), Mathuriya et al. (2018) showed that convolutional neural networks (CNN) can be trained to predict cosmological parameters from the visual shape of the large scale structure, i.e. the filaments, clusters and voids of the cosmic density field. These preliminary works used the dark matter density field at redshift zero. We build upon these works by considering realistic mock galaxy catalogues that mimic true observations. We construct light-cones that span the redshift range appropriate for current and near future cosmological surveys such as LSST, EUCLID, WFIRST etc. In summary, we propose a novel multi-image input CNN to track the evolution in the morphology of large scale structures over cosmic time to constrain cosmology and the expansion history of the Universe.

  • PDF

HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE

  • KIM, JUHAN;PARK, CHANGBOM;L'HUILLIER, BENJAMIN;HONG, SUNGWOOK E.
    • 천문학회지
    • /
    • 제48권4호
    • /
    • pp.213-228
    • /
    • 2015
  • The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 63003 gravitating particles in a cubic box of Lbox = 3150 h−1Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to Ms = 2.7 × 1011h−1M. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln(1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation function of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine μ compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4.

Cosmological Tests using Redshift Space Clustering in BOSS DR11

  • Song, Yong-Seon;Sabiu, Cristiano G.;Okumura, Teppei;Oh, Minji;Linder, Eric V.
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.43.3-44
    • /
    • 2015
  • We analyze the clustering of large scale structure in the Universe in a model independent method, accounting for anisotropic effects along and transverse to the line of sight. A large sample of 690,000 galaxies from The Baryon Oscillation Spectroscopy Survey Data Release 11 are used to determine the Hubble expansion H, angular distance D_A, and growth rate GT at an effective redshift of z=0.57. After careful bias and convergence studies of the effects from small scale clustering, we find that cutting transverse separations below 40 Mpc/h delivers robust results while smaller scale data leads to a bias due to unmodelled nonlinear and velocity effects. The converged results are in agreement with concordance LCDM cosmology, general relativity, and minimal neutrino mass, all within the $68{\backslash}%$ confidence level. We also present results separately for the northern and southern hemisphere sky, finding a slight tension in the growth rate -- potentially a signature of anisotropic stress, or just covariance with small scale velocities -- but within $68{\backslash}%$ CL.

  • PDF

Towards a Better Understanding of Structure Formation: Galaxies and Dark Matter

  • Hwang, Ho Seong
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.35.4-35.4
    • /
    • 2019
  • Understanding the interplay between galaxies and dark matter in the universe is one of key challenges in modern astrophysics. This provides an important test of structure formation scenarios and cosmological models. I discuss three aspects of this test: (1) comparing the matter distribution from galaxy redshift surveys with that from weak-lensing surveys, (2) statistical comparison of large-scale structures between observations and cosmological simulations, and (3) multi-wavelength study of galaxies. These tests underscore the importance of combining photometric and spectroscopic surveys in observations along with cosmological simulations for exploring and understanding the structure formation.

  • PDF

MAGNETIC FIELD IN THE LOCAL UNIVERSE AND THE PROPAGATION OF UHECRS

  • DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.427-431
    • /
    • 2004
  • We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.

ACCELERATION OF COSMIC RAYS AT LARGE SCALE COSMIC SHOCKS IN THE UNIVERSE

  • KANG HYESUNG;JONES T. W.
    • 천문학회지
    • /
    • 제35권4호
    • /
    • pp.159-174
    • /
    • 2002
  • Cosmological hydrodynamic simulations of large scale structure in the universe have shown that accretion shocks and merger shocks form due to flow motions associated with the gravitational collapse of nonlinear structures. Estimated speed and curvature radius of these shocks could be as large as a few 1000 km/s and several Mpc, respectively. According to the diffusive shock acceleration theory, populations of cosmic-ray particles can be injected and accelerated to very high energy by astrophysical shocks in tenuous plasmas. In order to explore the cosmic ray acceleration at the cosmic shocks, we have performed nonlinear numerical simulations of cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. We adopted the Bohm diffusion model for CRs, based on the hypothesis that strong Alfven waves are self-generated by streaming CRs. The shock formation simulation includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. For merger shocks with small Mach numbers, however, the energy transfer to CRs is only about $10-20\%$ with an associated CR particle fraction of $10^{-3}$. Nonlinear feedback due to the CR pressure is insignificant in the latter shocks. Although detailed results depend on models for the particle diffusion and injection, these calculations show that cosmic shocks in large scale structure could provide acceleration sites of extragalactic cosmic rays of the highest energy.

A Topological Analysis of Large Scale Structure Using the CMASS Sample of SDSS-III

  • 최윤영;김주한;김성수
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.56.2-56.2
    • /
    • 2013
  • We study the three-dimensional genus topology of large-scale structure using the CMASS Data Release 11 sample of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The CMASS sample yields a genus curve that is characteristic of one produced by Gaussian random-phase initial conditions. The data thus supports the standard model of inflation where random quantum fluctuations in the early universe produced Gaussian random-phase initial conditions. Modest deviations in the observed genus from random phase are as expected from the nonlinear evolution of structure. We construct mock SDSS CMASS surveys along the past light cone from the Horizon Run 3 (HR3) N-body simulations, where gravitationally bound dark matter subhalos are identified as the sites of galaxy formation. We study the genus topology of the HR3 mock surveys with the same geometry and sampling density as the observational sample, and the observed genus topology to be consistent with LCDM as simulated by the HR3 mock samples.

  • PDF

COSMIC SHOCK WAVES ON LARGE SCALES OF THE UNIVERSE

  • RYU DONGSU;KANG HYESUNG
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.25-26
    • /
    • 1996
  • In the standard theory of the large scale structure formation, matter accretes onto high density perturbations via gravitational instability. Collision less dark matter forms caustics around such structures, while collisional baryonic matter forms accretion shocks which then halt and heat the infalling gas. Here we discuss the characteristics. roles, and observational consequences of these accretion shocks.

  • PDF

STAR FORMING ACTIVITY OF CLUSTER GALAXIES AT z~1

  • KIM, JAE-WOO;IM, MYUNGSHIN;LEE, SEONG-KOOK;HYUN, MINHEE
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.503-505
    • /
    • 2015
  • The galaxy cluster is an important object for investigating the large scale structure and evolution of galaxies. Recent wide and deep near-IR surveys provide an opportunity to search for galaxy clusters in the high redshift universe. We have identified candidate clusters of 0.8< z <1.2 from the $25deg^2$ SA22 field using an optical-near-IR dataset from merged UKIDSS DXS, IMS and CFHTLS catalogs. Using these candidates, we investigate the star forming activity of member galaxies. Consequently, at z ~1, the star forming activity of cluster galaxies is not distinguishable from those of field galaxies, which is different from members in local clusters. This means the environmental effect becomes more important for $M_{\ast}>10^{10}M_{\odot}$ galaxies at z <1.

GALAXY CORRELATION IN A BUBBLY UNIVERSE

  • Ryu, Dong-Su
    • 천문학논총
    • /
    • 제7권1호
    • /
    • pp.25-30
    • /
    • 1992
  • Recent redshift surveys suggest that most galaxies may be distributed on the surfaces of bubbles surrounding large voids. To investigate the quantitative consistency of this qualitative picture of large-scale structure, we study analytically the clustering properties of galaxies in a universe filled with spherical shells. In this paper, we report the results of the calculations for the spatial and angular two-point correlation functions of galaxies. With ${\sim}20%$ of galaxies in clusters and a power law distribution of shell sizes, $n_{sh}(R){\sim}R^{-{\alpha}}$, ${\alpha}\;{\simeq}\;4$, the observed slope and amplitude of the spatial two-point correlation function ${\xi}_{gg}(r)$ can be reproduced. (It has been shown that the same model parameters reproduce the enhanced cluster two-point correlation function, ${\xi}_{cc}(r)$). The corresponding angular two-point correlation function $w({\theta})$ is calculated using the relativistic form of Limber's equation and the Schecter-type luminosity function. The calculated w(${\theta}$) agrees with the observed one quite well on small separations (${\theta}{\lesssim}2deg$).

  • PDF