• Title/Summary/Keyword: large workspace

Search Result 49, Processing Time 0.029 seconds

The Position Decision Comparison Experiment of Hall and Photo Sensors in the Linear Stage (홀 센서와 포토 센서를 이용하는 선형 스테이지에서 위치결정 비교 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.157-161
    • /
    • 2015
  • For machining systems having a high precision positioning with a long stroke, it is necessary to examine the repeatability of reference position decisions. Though ball-screw driven linear stages equipped with encoders have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped accurate home sensors. High precision machining technology has become one of the most important aspects of the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. This study is performed to experimentally compare the repeatability for home position decisions in the case of photo sensors and hall sensors as a home switch of the ball-screw driven linear stage.

The MPI CyberMotion Simulator: A Novel Research Platform to Investigate Human Control Behavior

  • Nieuwenhuizen, Frank M.;Bulthoff, Heinrich H.
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.122-131
    • /
    • 2013
  • The MPI CyberMotion Simulator provides a unique motion platform, as it features an anthropomorphic robot with a large workspace, combined with an actuated cabin and a linear track for lateral movement. This paper introduces the simulator as a tool for studying human perception, and compares its characteristics to conventional Stewart platforms. Furthermore, an experimental evaluation is presented in which multimodal human control behavior is studied by identifying the visual and vestibular responses of participants in a roll-lateral helicopter hover task. The results show that the simulator motion allows participants to increase tracking performance by changing their control strategy, shifting from reliance on visual error perception to reliance on simulator motion cues. The MPI CyberMotion Simulator has proven to be a state-of-the-art motion simulator for psychophysical research to study humans with various experimental paradigms, ranging from passive perception experiments to active control tasks, such as driving a car or flying a helicopter.

A Study on the Awareness and Needs of Employees in Office Work Environment -Focused on Pusan and Kyoungnam Area- (업무환경에 대한 이용자의 의식 및 요구에 관한 연구 -부산 및 경남지역 중심으로-)

  • 손광호
    • Korean Institute of Interior Design Journal
    • /
    • no.13
    • /
    • pp.96-101
    • /
    • 1997
  • The purpose of this study was to examine the current office work environment and suggest the needs for improvement the quality and efficiency of work. To fulfill this task, information describing various environmental conditions was gathered from generally large offices in Pusan and Major cities in Kyoungnam. Data were collected on questionnaire's general information, lighting, air quality, temperature, health problems, noise and equipment arrangements, and the size fo workspace. The extent to which the attitudes and behaviors of workers were related to these environmental conditions was then examined and scrutinized. According to the development of office automation, the interest in improvement of office environment become increased. Workstation size, individual environmental control, health care, adequate storage space and noise control should be recognized as critical to the worker's environmental satisfactiov. Finally, based on the results of this study, a number ofrecommendations can be made for alleviating some of the problems that have been identified. Designers should be interested in knowing if their environments actually function in the manner in which they were intended.

  • PDF

Kinematic Characteristics of a 4-RRPaRR Type Schönflies Motion Generator (4-RRPaRR구조의 Schönflies Motion Generator 기구학 특성 분석)

  • Kim, Sung-Mok;Yi, Byung-Ju;Kim, Whee-Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.78-85
    • /
    • 2011
  • This article investigates kinematic characteristics of a Sch$\ddot{o}$nflies motion generator which represents a mechanism having translational three Degree-of-Freedom (DOF) and rotational one-DOF motion about a fixed axis. The mechanism consists of the base plate and the moving plate, and four identical limbs connecting them. Each limb employs two revolute joints (RR), one parallelogram (Pa), and two revolute joints (RR) from the base plate to the moving plate. The mechanism is driven by four actuators which are placed on the base plate to minimize dynamic loads. It is shown through simulations that the mechanism can be designed to secure large dexterous workspace and thus has very high potential for actual applications such as haptic devices and high-speed requiring tasks such as pick-and-place operations, riveting, screwing tasks, etc.

Robotic welding system for sub-assembly line in ship manufacturing (로봇을 이용한 조선 소조립 용접 자동화 시스템)

  • 김진오;신정식;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.516-519
    • /
    • 1996
  • Sub-assembly in ship manufacturing is a sequence of filet joint welding of stiffeners on metal panels and the process is different depending on companies. In this paper, we introduce a new intelligent robotic system of the sub-assembly process in Samsung Heavy Industry, where one shift of 22m * 9m workspace includes one to ten panels and each panel includes up to 10 stiffeners. The inherent problems such as several hundreds of different panels, unstructured task environment and the large scale do not allow a fixed automation, but needs highly intelligent versatile automation. The robotic system is composed of four 14DOF macro-mini robots and a task recognition system. Application of this system has verified the task specification such as low temperature environment(-10.deg. C) and productivity is satisfied successfully.

  • PDF

Development of the Pneumatic Service Robot with a Hybrid Type (하이브리드형의 공압 서비스 로봇의 개발)

  • Choi, Cheol-U;Choi, Hyeun-Seok;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.686-691
    • /
    • 2001
  • In this paper, the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantage of good compliance, high payload-to-weight and payload-to-volume ratios, high speed and force capabilities. Using pneumatic actuators which have low stiffness, the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory, the pneumatic service robot is evaluated and verified.

  • PDF

An inverse dynamic trajectory planning for the end-point tracking control of a flexible manipulator

  • Kwon, Dong-Soo;Babcock, Scott-M.;Book, Wayne-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.599-606
    • /
    • 1992
  • A manipulator system that needs significantly large workspace volume and high payload capacity has greater link flexibility than typical industrial robots and teleoperators. If link flexibility is significant, position control of the manipulator's end-effector exhibits the nonminimum phase, noncollocated, and flexible structure system control problems. This paper addresses inverse dynamic trajectory planning issues of a flexible manipulator. The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, the inverse dynamic method calculates the feedforward torque and the trajectories of all state variables that do not excite structural vibrations for a given end-point trajectory. Through simulation and experiment with a single-Unk flexible manipulator, the effectiveness of the inverse dynamic method has been demonstrated.

  • PDF

A Position Decision Experiment in Ball-screw Driven Linear Stage using a Photomicrosensor (포토 마이크로 센서를 이용한 볼나사 구동 리니어 스테이지의 위치결정 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.463-467
    • /
    • 2014
  • High precision machining technology has become one of the most important parts in the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. For machining systems having high precision positioning with a long stroke, it is necessary to examine the repeatability of the reference position decision. Though ball-screw driven linear stages equipped with linear scale have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped with an accurate home sensor. This study is performed to experimentally examine the repeatability for home position decision of a photo micro sensor as a home switch of a ball-screw driven linear stage by using a capacitance probe.

Fast Path Planning Algorithm for Mobile Robot Navigation (모바일 로봇의 네비게이션을 위한 빠른 경로 생성 알고리즘)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • Mobile robots use an environment map of its workspace to complete the surveillance task. However grid-based maps that are commonly used map format for mobile robot navigation use a large size of memory for accurate representation of environment. In this reason, grid-based maps are not suitable for path planning of mobile robots using embedded board. In this paper, we present the path planning algorithm that produce a secure path rapidly. The proposed approach utilizes a hybrid map that uses less memory than grid map and has same efficiency of a topological map. Experimental results show that the fast path planning uses only 1.5% of the time that a grid map based path planning requires. And the results show a secure path for mobile robot.

Fast and Fine Tracking Control System Using Coarse/Fine Compound Actuation

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.463-463
    • /
    • 2000
  • A dual-stage positioner for fast and fine robotic manipulations is presented. By adopting the merits of both coarse and fine actuator, a desirable system having the capacity of large workspace with high resolution of motion is enabled. We have constructed an ultra precision XY positioner with dual-stage mechanism where the PZT driven fine stage is mounted on the motor driven XY positioner and applied it to fine tracking controls and micro-tele operations as a slave manipulator. We describe essential merits of the compound actuation mechanism and some control strategies to successfully utilize it with proper servo system design. Through experimental results, the effectiveness of the coarse/fine manipulation by the dual-stage positioner will be shown.

  • PDF