• Title/Summary/Keyword: large width-to-thickness ratio

Search Result 51, Processing Time 0.019 seconds

Performance Variations of a Small Centrifugal Compressor with Exit Blade Thickness (초소형 원심압축기의 날개 두께 변화에 따른 성능에 관한 실험적 연구)

  • Kang, Shin-Hyoung;Cho, Woon-Je;Yun, Ha-Yong;Lee, Seung-Kap
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.15-21
    • /
    • 1999
  • Some sized centrifugal compressors were designed and their performance measured to investigate the effects of exit blade thickness, width and back swept angle. The impeller of larger blade thickness shows low pressure ratio compared with that of smaller ones. Backswept angle also have a large effect on the efficiency. Measured values of slip factor are quite different from the estimated values of the Wiesner-Busemann model and an increase in the flow late.

  • PDF

An Analytical Evaluation on Buckling Resistance of Tapered H-Section Deep Beam (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 해석적 평가)

  • Lee, Seong Hui;Shim, Hyun Ju;Lee, Eun Taik;Hong, Soon Jo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.493-501
    • /
    • 2007
  • Recently, in the domestic amount of materials,curtailment and economic efficiency security by purpose, tapered beam application is achieved, but the architectural design technology of today based on the material non-linear method does not consider solutions to problems such as brittle fracture. So, geometric non-linear evaluation thatincludes initial deformation, width-thickness ratio, web stiffener and unbraced length is required. Therefore, in this study, we used ANSYS, a proven finite elementanalysis program,and material and geometric non-linear analysis to study existing and completed tapered H-section as deep beam's analysis model. Main parameters include the width-thickness ratio of web, stiffener, and flange brace, with the experimental result obtained by main variable buckling and limit strength evaluation. We made certain that a large width-thickness ratio of the web decreases the buckling strength and short unbraced web significantly improves ductility.

Simulations of the hysteretic behavior of thin-wall cold-formed steel members under cyclic uniaxial loading

  • Dong, Jun;Wang, Shiqi;Lu, Xi
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2006
  • In this paper, the hysteretic behaviors of channel and C-section cold-formed steel members (CFSMs) under cyclic axial loading were simulated with the finite element method. Geometric and material nonlinearities, Bauschinger effect, strain hardening and strength improvement at corner zones were taken into account. Extensive numerical results indicated that, as the width-to-thickness ratio increases, local buckling occurs prematurely. As a result, the hysteretic behavior of the CFSMs degrades and their energy dissipation capability decreases. Due to the presence of lips, the hysteretic behavior of a C-section steel member is superior to that of its corresponding channel section. The intermediate stiffeners in a C-section steel member postpone the occurrence of local buckling and change its shapes, which can greatly improve its hysteretic behavior and energy dissipation capability. Therefore, the CFSMs with a large width-to-thickness ratio can be improved by adding lips and intermediate stiffeners, and can be used more extensively in residential buildings located in seismic areas.

Shear response of lean duplex stainless steel plate girders

  • Armoosh, Salam R.;Khalim, A.R.;Mahmood, Akram Sh.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1267-1281
    • /
    • 2015
  • Carbon steel plate girders have been used on a large scale in the building industry. Nowadays, Lean Duplex Stainless Steel (LDSS) plate girders are gaining popularity as they possess greater strength and are more impervious to corrosion than those that are constructed from carbon steel. Regardless of their popularity, there is very limited information with regards to their shear behavior. In this paper, the non-linear finite element analysis was employed to investigate the shear behavior of LDSS plate girders. Parameters considered were the web thickness, the flange width, and the girders aspect ratio. The analysis revealed that although the shear behavior of the LDSS girders was no different from that of carbon steel plate girders, it had obviously been affected by the non-linearity of the material. Furthermore, the selected parameters were found to pronounce effect on the shear capacity of the LDSS girders. That is, the shear capacity increased considerably with web thickness, and increased slightly with flange width. However, it was reduced as the aspect ratio increased. Comparisons between the finite element analysis failure loads and those predicted by the current European Code of Practice revealed that the latter underestimated the shear strength of the LDSS plate girders.

Axial Loading Behaviors of Square Concrete-Filled Tubular Columns with Large Width-to-Thickness Ratio Retrofitted using Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets) (탄소섬유쉬트(CFRP Sheets)로 보강된 폭두께비가 큰 콘크리트 충전 각형강관 기둥의 중심축하중거동)

  • Park, Jai Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • This paper presents the experimental results of behavior of square CFT columns with large the width-ro thickness ratio strengthened with carbon fiber reinforced polymers (CFRP) sheets subjected to concentrated axial loading. The main parameters were b/t ratio and the number of CFRP layers and 6 specimens were fabricated. The values of b/t were ranged from 60 to 100. From the tests, Maximum increase of 16% was also achieved in axial-load capacity with three transverse layered CFRP applied on four sides of steel tubes. The load capacity decreased up to 41% comparing with nominal load capacity of unstrengthened CFT column. However, for CFRP strengthened CFT, the load capacity decreased up to 32%. Finally, from the load-strain relationships, the local buckling occurred before yield point of steel tubes. Also, from the load-strain relationships, it was observed that local buckling were delayed on CFT columns by CFRP sheets retrofitting.

Genetic Analysis of Morphological Traits of Rice Grain and Their Inter-relationships

  • Chang, Jae-Ki;Yeo, Un-Sang;Oh, Byong-Geun;Lim, Sang-Jong;Yang, Sae-Jun;Kim, Soon-Chul;Moon, Huhn-Pal;Sohn, Jae-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.1
    • /
    • pp.36-41
    • /
    • 2002
  • Two rice varieties, 'Oochikara' with large grain and 'Hwayeongbyeo' and their progenies (F$_1$, F$_2$, B$_1$ and B$_2$) were tested to understand gene action of morphological traits of rice grain and their relationships. The evaluated traits were 1,000-grain weight, grain length, width, thickness, length-width ratio and chalkiness of brown rice. Correlation between grain weight and chalkiness was highly significant in the all progenies, and grain length were not associated with width and thickness in an F$_2$ population. Scaling test and jonit scaling test revealed that inheritance of grain traits were fitted to additive-dominance model without epistasis. Additive effects for the traits were much greater than the dominance effects.

Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition

  • Ding, Fa-xing;Wang, Wenjun;Jiang, Binhui;Wang, Liping;Liu, Xuemei
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.355-367
    • /
    • 2021
  • This paper investigates the mechanical response of simply supported one-way reinforced concrete slabs under fire through numerical analysis. The numerical model is constructed using the software ABAQUS, and verified by experimental results. Generally, mechanical response of the slab can be divided into four stages, accompanied with drastic stress redistribution. In the first stage, the bottom of the slab is under tension and the top is under compression. In the second stage, stress at bottom of the slab becomes compression due to thermal expansion, with the tension zone at the mid-span section moving up along the thickness of the slab. In the third stage, compression stress at bottom of the slab starts to decrease with the deflection of the slab increasing significantly. In the fourth stage, the bottom of the slab is under tension again, eventually leading to cracking of the slab. Parametric studies were further performed to investigate the effects of load ratio, thickness of protective layer, width-span ratio and slab thickness on the performance of the slab. Results show that increasing the thickness of the slab or reducing the load ratio can significantly postpone the time that deflection of the slab reaches span/20 under fire. It is also worth noting that slabs with the span ratio of 1:1 reached a deflection of span/20 22 min less than those of 1:3. The thickness of protective layer has little effect on performance of the slab until it reaches a deflection of span/20, but its effect becomes obvious in the late stages of fire.

Analysis of shear lag effect in the negative moment region of steel-concrete composite beams under fatigue load

  • Zhang, Jinquan;Han, Bing;Xie, Huibing;Yan, Wutong;Li, Wangwang;Yu, Jiaping
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.435-451
    • /
    • 2021
  • Shear lag effect was a significant mechanical behavior of steel-concrete composite beams, and the effective flange width was needed to consider this effect. However, the effective flange width is mostly determined by static load test. The cyclic vehicle loading cases, which is more practical, was not well considered. This paper focuses on the study of shear lag effect of the concrete slab in the negative moment region under fatigue cyclic load. Two specimens of two-span steel-concrete composite beams were tested under fatigue load and static load respectively to compare the differences in the negative moment region. The reinforcement strain in the negative moment region was measured and the stress was also analyzed under different loads. Based on the OpenSees framework, finite element analysis model of steel-concrete composite beam is established, which is used to simulate transverse reinforcement stress distribution as well as the variation trends under fatigue cycles. With the established model, effects of fatigue stress amplitude, flange width to span ratio, concrete slab thickness and shear connector stiffness on the shear lag effect of concrete slab in negative moment area are analyzed, and the effective flange width ratio of concrete slab under different working conditions is calculated. The simulated results of effective flange width are compared with calculated results of the commonly used specifications, and it is found that the methods in the specifications can better estimate the shear lag effect in concrete slab under static load, but the effective flange width in the negative moment zone under fatigue load has a large deviation.

A Study of the Young Aged Women′s Bust (청년기 여성의 상반신 체형 연구)

  • 엄정옥;문명옥
    • Journal of the Korean Society of Costume
    • /
    • v.50 no.5
    • /
    • pp.117-130
    • /
    • 2000
  • The purpose of this thesis is to offer basic data for clothing design which is intended to apply appropriate shape and capacity to clothes. The following are the analyzed results of an investigation which was conducted to characterize the upper half of the female body of 193 women whose ages are 18 to 25, taking part in this investigation. According to the results of analyzing young women's bust, I came to find a large individual difference of the wide varying factor numbers at the items of the side feature, the body stance, and the dart quantity. For the analysis of the female's upper body, 11 factors are used. The are as follows: Factor 1. width of the bust Factor 2. height of the bust and length of the arm Factor 3. side thickness of the bust and the upside type Factor 4. length of the bust on the front Factor 5. length of the bust on the back Factor 6. salient ratio of the breast Factor 7. width of the neck. the armhole, and measurement of the droop Factor 8. length of the shoulder Factor 9. flat ratio of the bust Factor 10. inclination of the shoulder factor 11. form of the back The shape of young women's upper bodies can be divided into four groups. The character ization of each group are as follows : Group 1 . 28.5% of the women who take part in this investigation belong to Group 1 These women have the shortest body, with a longer length of the front than the back and more thickness on the front than the back. Group 2. 21.1% of the women who take part in this investigation belong to this group. They show a longer length of the back and more thickness of the back than the front. In addition, this group is bent forward. Group 3. This group is the mast common type, showing the shortest and thickest character. 37.8% of the women who take part in this investigation have this bust character Group 4. 12.4% of the women belong to Group 4. They possess the highest and fattest character, skewing smaller necks, armholes, and waists than the other groups. This group also shows the drooping shoulders.

  • PDF

Experimental Evaluation of Flexural Performance Evaluation of Tapered H-Section Beams with Slender Web (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 실험적 평가)

  • Shim, Hyun Ju;Lee, Seong Hui;Kim, Jin Ho;Lee, Eun Taik;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.483-492
    • /
    • 2007
  • Pre-Engineering Building (PEB) system is one of the most economical structural systems. Tapered members can resist a maximum stress at a single location, whereas stresses of the rest of the members are considerably low. This results in appreciable savings both in terms of materials and construction costs. However, it was appreciated that special consideration would be required for certain aspects of this structural form. In particular, because of their slenderness, webs would buckle laterally and torsionally under the combined action of excessive axial, bending and shear forces. In this study, a total of four large-scale rafters with simple ends were tested. The main parameters were the width-thickness ratio of the web, the stiffener, and the flange brace. The purpose of this experiment is to evaluate the structural stability and to offer back-data on PEB design.