• Title/Summary/Keyword: large solution

Search Result 2,869, Processing Time 0.032 seconds

Large deflection analysis of a fiber reinforced composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.567-576
    • /
    • 2018
  • The objective of this work is to analyze large deflections of a fiber reinforced composite cantilever beam under point loads. In the solution of the problem, finite element method is used in conjunction with two dimensional (2-D) continuum model. It is known that large deflection problems are geometrically nonlinear problems. The considered non-linear problem is solved considering the total Lagrangian approach with Newton-Raphson iteration method. In the numerical results, the effects of the volume fraction and orientation angles of the fibre on the large deflections of the composite beam are examined and discussed. Also, the difference between the geometrically linear and nonlinear analysis of fiber reinforced composite beam is investigated in detail.

On the Use of Momentum Interpolation Method for flows Involving A Large Body force (바디포오스가 큰 유동해석시 운동량보간법의 사용에 관한 연구)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.553-556
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation mettled for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. Numerical experiments are performed for a typical flow involving a large body force. The tact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

  • PDF

Optimal control for voltage and reactive power using piecewise method (분할수법을 이용한 전압무효전력의 최적제어)

  • 유석구;임화영
    • 전기의세계
    • /
    • v.31 no.5
    • /
    • pp.375-382
    • /
    • 1982
  • The optimum control of voltage and reactive power in large system requires large amounts of complicated calculation. If the large power system is controlled by the centralized control scheme, the necessary computing time, memory requirments and data transmission channels increase exponetially, and computer control of the system becomes difficult. Piecewise method which aims at the reduction of the difficulties of centralized control scheme is to decompose a large power system into several subsystems, each of which is controlled by a local computer and the control efforts of each subsystem are coordinated by a central computer. Unless sufficient coordination is made between subsystems, the control quality may become very poor. This paper describes how piecewise method can be applied in the optimal control of voltage and reactive power in large system, and presents effective calaulating algorithm for the solution of the problem. The numerical example for model system is presented here.

  • PDF

A FINITE ELEMENT SOLUTION FOR THE CONSERVATION FORM OF BBM-BURGERS' EQUATION

  • Ning, Yang;Sun, Mingzhe;Piao, Guangri
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.495-509
    • /
    • 2017
  • With the accuracy of the nonlinearity guaranteed, plenty of time and large memory space are needed when we solve the finite element numerical solution of nonlinear partial differential equations. In this paper, we use the Group Element Method (GEM) to deal with the non-linearity of the BBM-Burgers Equation with Conservation form and perform a numerical analysis for two particular initial-boundary value (the Dirichlet boundary conditions and Neumann-Dirichlet boundary conditions) problems with the Finite Element Method (FEM). Some numerical experiments are performed to analyze the error between the exact solution and the FEM solution in MATLAB.

Natural Frequencies and Mode Shapes of Beams with Step Change in Cross-Section

  • Kim, Yong-C.;Nam, Alexander V.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.152-157
    • /
    • 2003
  • Natural frequencies of the transνerse vibration of beams with step change in cross-section are obtained by using the asymptotic closed form solution. This closed form solution is found by using WKB method under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is found to be still very accurate even in the case of large variation in cross-section and tension. Therefore, this result can be easily applied to many engineering problems.

  • PDF

Radiation-Induced Oscillatory Instability in Diffusion Flames (복사 열손실로 인한 확산 화염의 맥동 불안정에 관한 연구)

  • Sohn, Chae Hoon;Kim, Jong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1185-1191
    • /
    • 1999
  • Radiation-induced oscillatory instability in diffusion flames is numerically investigated with nonlinear dynamics considered. As the simplest flame model, a diffusion flame established in the stagnant mixing layer is employed with optically thin gas-phase radiation and unity Lewis numbers for all species. Attention is focused on the radiation-induced extinction regime, which occurs at large $Damk\ddot{o}hler$ number. Once the steady flame structure is obtained for a prescribed value of the initial $Damk\ddot{o}hler$ number, transient solution of the flame is calculated after a finite amount of the $Damk\ddot{o}hler$-number perturbation is imposed on the steady flame. Transient evolution of the flame exhibits three types of flame-evolution behaviors, namely decaying oscillatory solution, diverging solution to extinction and stable limit-cycle solution. A dynamic extinction boundary is identified for laminar flamelet library.

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM

  • Lee, Geunseop
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.613-626
    • /
    • 2017
  • For the overdetermined linear system, when both the data matrix and the observed data are contaminated by noise, Total Least Squares method is an appropriate approach. Since an ill-conditioned data matrix with noise causes a large perturbation in the solution, some kind of regularization technique is required to filter out such noise. In this paper, we consider a Dual regularized Total Least Squares problem. Unlike the Tikhonov regularization which constrains the size of the solution, a Dual regularized Total Least Squares problem considers two constraints; one constrains the size of the error in the data matrix, the other constrains the size of the error in the observed data. Our method derives two nonlinear equations to construct the iterative method. However, since the Jacobian matrix of two nonlinear equations is not guaranteed to be nonsingular, we adopt a trust-region based iteration method to obtain the solution.

On the numerical solution of the point reactor kinetics equations

  • Suescun-Diaz, D.;Espinosa-Paredes, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1340-1346
    • /
    • 2020
  • The aim of this paper is to explore the 8th-order Adams-Bashforth-Moulton (ABM8) method in the solution of the point reactor kinetics equations. The numerical experiment considers feedback reactivity by Doppler effects, and insertions of reactivity. The Doppler effects is approximated with an adiabatic nuclear reactor that is a typical approximation. The numerical results were compared and discussed with several solution methods. The CATS method was used as a benchmark method. According with the numerical experiments results, the ABM8 method can be considered as one of the main solution method for changes reactivity relatively large.