저출산 문제로 인한 병역자원 감소와 병 복무기간 단축에 따른 군 간부 대비 병 복무 선호 현상은 우수한 군 간부확보정책에 대한 추가적인 고찰을 필요로 한다. 이와 관련된 연구들은 대부분 사회과학에서 주로 사용되는 방법론으로 분석하였으나, 본 연구는 대량의 문헌조사에 적합한 텍스트 마이닝의 방법론으로 접근한다. 이를 위해, 본 연구는 공군 부사관 지원자 자기소개서에서 차별적인 특성의 단어들을 추출하고 합격 및 불합격의 극성을 분석한다. 본 연구는 총 3단계로 이루어졌다. 첫번째, 지원분야를 일반분야와 기술분야로 나누고, 자기소개서에서 특성을 가지는 단어들을 분야별 빈도수 비율의 차이대로 순서화 한다. 각 지원분야별 비율의 차이가 클수록 해당 지원분야의 특성을 나타내는 것으로 정의하였다. 두번째, 이 특성을 나타내는 단어들을 LDA를 통해 단어들의 Topic을 군집화하고 이를 바탕으로 Label을 정의하였다. 세번째, 이 군집화 된 지원분야별 단어들을 L-LDA를 통해 합격과 불합격의 극성을 분석하였다. L-LDA값의 차이가 합격에 가까울수록 합격자들이 많이 사용하는 단어로 정의하였다. 본 연구를 통해, 공군 부사관 자기소개서의 차별적 특성을 추출하기에는 LDA보다 L-LDA가 더 적합함을 알 수 있다. 또한, 이러한 방법론은 별도의 서면 또는 대면 설문 방식이 아니라, 대량 문서에 대한 텍스트 마이닝 기법을 적용하여 분석시간을 단축하고, 전체 모집단에 대한 신뢰성을 높일 수 있다. 따라서 본 연구인 공군 부사관 선발결과 분석을 통해, 선발제도 및 홍보제도에 활용 가능한 정보를 제공하고, 군 인력획득 분야 연구에 있어 활용 가능한 방법론을 제안하고자 한다.
1960-70년대 대규모 산림녹화 이후에 한국의 산림은 점차 노령화되고 있다. 노령림의 순 CO2 교환은 이론적으로 중립에 가깝지만, 교란이나 관리에 의해 CO2 흡원 또는 발원이 될 수 있다. 본 연구는 한국의 광릉 낙엽활엽수 노령림(GDK)의 CO2 수지 역학을 이해함으로써, 다음 두 가지 질문에 답하고자 하였다: (1) 보전되고 있는 GDK는 과연 이론적으로 알려져 있는 CO2 중립인가? (2) 관측된 CO2 수지의 경년 변동이 문헌에 보고된 조절 인자들과의 선형적인 인과관계로 설명이 가능한가? 이에 답하기 위해, 본 연구는 KoFlux GDK 관측지에서 에디 공분산 기술로 2006년부터 2020년까지 15년 동안 관측된 CO2 플럭스 자료와 생기상학적 자료를 분석하였다. 연구 결과, (1) GDK는 15년 자료를 평균해서 보면 약한 CO2 발원이며, 관측기간 동안 흡원과 발원 사이를 오갔으나 최근 5년 동안 CO2 발원으로서의 강도가 증가하고 있다. (2) 전천일사, 생장기간, 엽면적지수의 경년 변동은 총 일차생산량(Gross Primary Production, GPP)의 경년변동과 양의 상관관계(R2=0.32~0.45)가 있는 반면, 기온과 지표면 온도의 경년 변동은 생태계 호흡(Ecosystem Respiration, RE)의 경년 변동과 유의한 상관관계가 없었다. 또한, 관측기간 초반(첫 10년)의 CO2 플럭스와 기상요인 및 생물학적 요인으로 학습시킨 기계학습은 관측기간 후반(최근 5년)의 GPP와 RE의 경년 변동을 제대로 모사해내지 못했다. 단, 고사목에서 배출된 탄소 추정량이 CO2 발원으로의 전환에 일부 기여했을 것으로 추정된다. GDK의 장기 CO2 수지 역학에 대해 올바로 이해하고 해석하기 위해서는, 분석과 모델링을 위한 복잡계과학 기반의 새로운 프레임워크가 필요하다. 더불어, 플럭스 모니터링 및 자료 품질 유지와 함께 고사목과 교란을 지속적으로 모니터링하는 것이 중요함을 다시 한 번 확인하였다.
본 연구에서는 CCTV 영상 기반 강우강도 산정 시 필수적으로 요구되는 적정 강우 이미지 DB를 구축하기 위한 방법론을 개발하였다. 먼저, 실환경에서 불규칙적이고 높은 변동성을 보일 수 있는 변수들(바람으로 인한 빗줄기의 변동성, 녹화 환경에서 포함되는 움직이는 객체, 렌즈 위의 흐림 현상 등)에 대한 통제가 가능한 한국건설생활환경시험연구원 내 기후환경시험실에서 CCTV 영상 DB를 구축하였다. 서로 다른 5개의 실험 조건을 고려하여 이상적 환경에서 총 1,728개의 시나리오를 구성하였다. 본 연구에서는 1,920×1,080 사이즈의 30 fps (frame per second) 영상 36개에 대하여 프레임 분할을 진행하였으며, 총 97,200개의 이미지를 사용하였다. 이후, k-최근접 이웃 알고리즘을 기반으로 산정된 최종 배경과 각 이미지와의 차이를 계산하여 빗줄기 이미지를 분리하였다. 과적합 방지를 위해 각 이미지에 대한 평균 픽셀 값을 계산하고, 설정한 픽셀 임계치보다 큰 자료를 선별하였다. 180×180 사이즈로의 재구성을 위해서 관심영역을 설정하고 10 Pixel 단위로 이동을 진행하여 픽셀 변동성이 최대가 되는 영역을 산정하였다. 합성곱 신경망 모델의 훈련을 위해서 120×120 사이즈로 재변환하고 과적합 방지를 위해 이미지 증강 과정을 거쳤다. 그 결과, 이미지 기반 강우 강도 합성곱 신경망 모델을 통해 산정된 결과값과 우량계에서 취득된 강우자료가 전반적으로 유사한 양상을 보였으며, 모든 강우강도 실험 조건에 대해서 약 92%의 데이터의 PBIAS (percent bias)가 절댓값 범위 10% 이내에 해당하였다. 본 연구의 결과물과 전이학습 등의 방법을 연계하여 기존 실환경 CCTV의 한계점을 개선할 수 있을 것으로 기대된다.
팬데믹으로 인한 재택근무와 가정용 전력수요의 증가는 전력수요 패턴에 상당한 변화를 불러왔다. 이로 인해 한전 PPA(전력구매계약) 및 자가용 태양광 발전량 파악이 어려워지고, 전력거래소의 전력수요예측과 계통운영에 어려움이 가중되고 있다. 전기에너지는 다른 에너지 자원과 달리 저장이 어려워, 생산된 에너지와 소비 사이의 균형을 유지하는 것이 매우 중요하다. 전기에너지의 부족이나 과잉 생산은 에너지 시스템에 큰 불안정성을 초래할 수 있으므로, 전력 수급을 효과적으로 관리하는 것이 필수적이다. 특히, 4차 산업혁명 시대에는 데이터의 중요성이 더욱 커져 대규모 화재나 정전과 같은 문제가 심각한 영향을 미칠 수 있다. 이에 따라, 전기에너지 분야에서 정확한 전력수요와 함께 재생에너지와 같은 발전량을 정확하게 예측하여 적절한 발전 관리를 하는 것이 중요하며, 이는 불필요한 전력 생산을 줄이고 에너지 자원을 효율적으로 활용하는데 도움이 된다. 이에, 본 연구에서는 산업통상자원부에서 제공한 169개 발전소의 데이터를 활용하여 최적의 집합전력자원을 구성하기 위해 (1) 재생에너지 발전량 예측제도와 목표, 그리고 실제 적용에 대해 검토하고, (2) 예측제도 정산을 고려한 집합구성 알고리즘을 개발한 후, (3) 분석 로직에 이를 적용하여 결과를 종합하고 해석하였다. 본 연구는 최적의 집합구성 알고리즘을 개발하여, 최대 정산금 대비 80.66%에 달하는 집합구성(Result_Number 546)을 도출하였으며, 발전소 집합을 구성하였을 때 정산금을 증가시키는 발전소(B1783, B1729, N6002, S5044, B1782, N6006)와 정산금을 감소시키는 발전소(S5034, S5023, S5031)를 확인하였다. 집합전력자원을 연구단위로 설정하여 최적의 집합구성 알고리즘을 개발한 최초의 연구로서 의의가 있으며, 본 연구결과의 활용으로 전력시스템의 안정성을 향상시키고 에너지 자원이 효율적으로 활용될 수 있기를 기대한다.
최근 경제재로서 수자원(Water Resources)의 속성이 공공재 성격을 동시에 띠면서 수자원기술의 측정과 성과 관리 체계를 확보하고 활용해야 할 필요성이 제기되고 있다. 그 동안 수자원기술의 평가는 대부분 순현재가치(NPV)나 비용편익효과(B/C)를 바탕으로 경제성 평가(Feasibility Study) 혹은 기술(환경)영향평가(Technology Assessment)로 수행되어 왔으며, 연구성과의 확산과 피드백을 받을 수 있는 기술 기반 사업의 경제적 가치를 객관적으로 평가하는 모델은 체계화되지 않았다. 그리하여, 본 연구에서는 K-water(한국수자원공사)가 담당하고 있는 수자원분야의 기술적 특성에 적합한 기술평가 체계를 구축할 필요성을 느끼고, 공익형 수자원기술에 대한 기술가치평가 모델을 개발하여 사례를 실증하고자 한다. 본 연구에 적용된 K-water 평가대상기술은 공공재로서, 사회전반에 기여한 가치 및 성과를 측정하고 관리할 수 있는 도구로 활용 가능하다. 예를 들면, 사회전반에 기여한 가치를 산출하여, 편익의 파급효과에 대한 성과 홍보자료, 혹은 비용 투입 당위성에 대한 근거자료로 활용할 수 있고, 공공기술의 특성상 대규모 연구개발 투입 비용에 대한 정당성을 확보할 수 있다. 따라서, 공공재를 다루는 한국의 대표적 공기업인 K-water가 사업 운영상의 전략을 수립하고 투입개발 비용에 대한 성과산출 근거 기반을 구축할 수 있을 것으로 판단된다. 본 고에서는 K-water가 담당하고 있는 수자원분야의 기술적 특성에 적합한 기술평가 체계를 기반으로, 공익형 수자원기술에 대한 기술가치평가 모델을 개발하여 사례를 실증하였다. 특히, 일본 산업기술종합연구소(AIST)의 평가방법론을 활용하여 연관 편익항목을 기준으로 비용계정에 매칭시킨 후, 기존의 비용-편익 접근법과 FCF(Free Cash Flow)법의 평가체계를 활용하는 'K-water 고유모델'을 제시하였으며 이를 통해 K-water 연구성과 관리체계 상의 파이프라인을 구축하는 동시에 "해수담수화" 관련 기술에 대한 검증을 수행하였다. 수자원 분야 기술의 특성을 반영한 웹기반 가치평가시스템의 설계 구성로직과 평가프로세스를 분석하며, 기술통합관리시스템 상의 공익형 및 수익형 기술가치를 산출하기 위한 각 모델별 참조정보 및 DB 연계로직도 살펴본다. 종래의 타 분야 기술가치평가 시스템이 지닌 재무적 데이터 기반의 사업가치 산출로직에 수자원 특성이 반영된 정성평가지표의 정량화 지수를 함께 반영한 하이브리드형 평가모듈과 실제 웹기반 평가의 UI 구성화면을 검토한다. K-water의 가치평가 모형은 공익형과 수익형 수자원 기술을 구분하여 평가하게 되는데, 먼저 수익형 기술가치평가는 "기술의 경제성"이라고 하는 특성상 외부 산업유형의 수익(Profit)특성을 반영하여 화면을 설계 가능하다. 예를 들어 K-water 기술인벤토리 수도부문 기술은 수처리 멤브레인과 같이 수익 지향 기술이 다수 분포된다. 반면에, 공익형 기술가치평가는 공공의 편익(Benefit)과 비용(Cost)특성을 반영하여 화면을 설계하게 되는데, 댐과 같이 편익을 지향하는 기술을 평가하는데 활용된다. 또한 본 고에서 제시된 비용-편익 기반의 공익형 기술가치평가 모형(K-water 고유 평가모델)에 대한 적정성 검토를 위해 사회적 수명(20년)을 지닌 수자원 기술의 편익흐름 추정으로부터 실제 사례에 적용해 보았으며, 향후에는 다양한 사업환경 특성을 반영한 비즈니스 모델별 평가모형 검증을 추가적으로 수행하고자 한다.
최근 스마트폰의 등장으로 인해 사용자들은 시간과 공간의 제약 없이 스마트폰을 이용한 새로운 의사소통의 방법을 경험하고 있다. 이러한 스마트폰은 고화질의 컬러화면, 고해상도 카메라, 실시간 3D 가속그래픽과 다양한 센서(GPS와 Digital Compass) 등을 제공하고 있으며, 다양한 센서들은 사용자들(개발자, 일반 사용자)로 하여금 이전에 경험하지 못했던 서비스를 경험할 수 있도록 지원하고 있다. 그 중에서 모바일 증강현실은 스마트폰의 다양한 센서들을 이용하여 개발할 수 있는 대표적인 서비스 중 하나이며, 이러한 센서들을 이용한 다양한 방법의 모바일 증강현실 연구들이 활발하게 진행되고 있다. 모바일 증강현실은 크게 위치 정보 기반의 서비스와 내용 기반 서비스로 구분할 수 있다. 위치 정보 기반의 서비스는 구현이 쉬운 장점이 있으나, 증강되는 정보의 위치가 실제의 객체의 정확한 위치에 증강되는 정보가 제공되지 않는 경우가 발생하는 단점이 존재한다. 이와 반대로, 내용 기반 서비스는 정확한 위치에 증강되는 정보를 제공할 수 있으나, 구현 및 데이터베이스에 존재하는 이미지의 양에 따른 검색 속도가 증가하는 단점이 존재한다. 본 논문에서는 위치 정보 기반의 서비스와 내용기반의 서비스의 장점들을 이용한 방법으로, 스마트폰의 다양한 센서(GPS, Digital Compass)로 부터 수집된 정보를 이용하여 데이터베이스의 탐색 범위를 줄이고, 탐색 범위에 존재하는 이미지들의 특징 정보를 기반으로 실제의 랜드마크를 인식하고, 인식한 랜드마크의 정보를 링크드 오픈 데이터(LOD)에서 검색하여 해당 정보를 제공하는 랜드마크 가이드 시스템을 제안한다. 제안하는 시스템은 크게 2개의 모듈(랜드마크 탐색 모듈과 어노테이션 모듈)로 구성되어있다. 첫 번째로, 랜드마크 탐색 모듈은 스마트폰으로 인식한 랜드마크(건물, 조형물 등)에 해당하는 정보들을 (텍스트, 사진, 비디오 등) 링크드 오픈 데이터에서 검색하여 검색된 결과를 인식한 랜드마크의 정확한 위치에 정보를 제공하는 역할을 한다. 스마트폰으로부터 입력 받은 이미지에서 특징점 추출을 위한 방법으로는 SURF 알고리즘을 사용했다. 또한 실시간성을 보장하고 처리 속도를 향상 시키기 위한 방법으로는 입력 받은 이미지와 데이터베이스에 있는 이미지의 비교 연산을 수행할 때 GPS와 Digital Compass의 정보를 사용하여 그리드 기반의 클러스터링을 생성하여 탐색 범위를 줄임으로써, 이미지 검색 속도를 향상 시킬 수 있는 방법을 제시하였다. 두 번째로 어노테이션 모듈은 사용자들의 참여에 의해서 새로운 랜드마크의 정보를 링크드 오픈 데이터에 추가할 수 있는 기능을 제공한다. 사용자들은 키워드를 이용해서 링크드 오픈 데이터로에서 관련된 주제를 검색할 수 있으며, 검색된 정보를 수정하거나, 사용자가 지정한 랜드마크에 해당 정보를 표시할 수 있도록 지정할 수 있다. 또한, 사용자가 지정하려고 하는 랜드마크에 대한 정보가 존재하지 않는다면, 사용자는 랜드마크의 사진을 업로드하고, 새로운 랜드마크에 대한 정보를 생성하는 기능을 제공한다. 이러한 과정은 시스템이 카메라로부터 입력 받은 대상(랜드마크)에 대한 정확한 증강현실 컨텐츠를 제공하기 위해 필요한 URI를 찾는데 사용되며, 다양한 각도의 랜드마크 사진들을 사용자들에 의해 협업적으로 생성할 수 있는 환경을 제공한다. 본 연구에서 데이터베이스의 탐색 범위를 줄이기 위해서 랜드마크의 GPS 좌표와 Digital Compass의 정보를 이용하여 그리드 기반의 클러스터링 방법을 제안하여, 그 결과 탐색시간이 기존에는 70~80ms 걸리는 반면 제안하는 방법을 통해서는 18~20ms로 약 75% 정도 향상된 것을 확인할 수 있었다. 이러한 탐색시간의 감소는 전체적인 검색시간을 기존의 490~540ms에서 438~480ms로 약 10% 정도 향상된 것을 확인하였다.
최근 인간과 상호작용할 수 있는 '소셜로봇'을 활용하여 복잡하고 다양한 사회문제를 해소하고 개인의 삶의 질을 제고하려는 시도가 주목받고 있다. 과거 로봇은 인간을 대신해서 산업 현장에 투입되고 노동력을 제공해주는 존재로 인식되었다. 그러나 오늘날의 로봇은 각종 산업분야를 관통하는 핵심 키워드인 'Smart'의 등장을 기점으로 인간과 함께 공존하며 사회적 교감이 가능한 '소셜로봇(Social Robot)'으로 그 개념이 확장되고 있다. 구체적으로 고객을 응대하는 서비스 로봇, 에듀테인먼트(Edutainment) 성격의 로봇, 그리고 인간과의 교감, 상호작용에 주목한 감성로봇 등이 출시되고 있다. 그러나 4차 산업혁명을 계기로 ICT 서비스 환경이 급격한 발전을 이룬 현재까지 소셜로봇의 대중화는 체감되지 않고 있다. 소셜로봇의 핵심 기능이 사용자와의 사회적 교감임을 고려하면, 소셜로봇의 대중화를 촉진하기 위해서는 기기에 적용되는 기술 이외의 요소들도 중요하게 고려할 필요가 있다. 본 연구는 로봇의 디자인 요소가 소셜로봇에 대한 소비자들의 구매를 이끌어내는데 중요하게 작용할 것으로 판단한다. 로봇의 외형이 유발하는 감성은 사용자의 인지, 추론, 평가와 기대를 형성하는 과정에서 중요한 영향을 미치며 나아가 로봇에 대한 태도와 호감 그리고 성능 추론 등에도 영향을 줄 수 있다. 그러나 소셜로봇에 대한 기존 연구들은 로봇의 개발방법론을 제안하거나, 소셜로봇이 사용자에게 제공하는 효과를 단편적으로 검증하는 수준에 머무르고 있다. 따라서 본 연구는 소셜로봇의 외형으로부터 사용자가 느끼는 감성이 소셜로봇에 대한 사용자의 태도에 미치는 영향을 검증해보고자 한다. 이때 서로 다른 출처의 이종 데이터 간 결합을 통하여 소셜로봇 디자인평가 모형을 구성한다. 구체적으로 소셜로봇의 외형에 대하여 사전에 구축된 ABOT Database로부터 다수의 소셜로봇에 대한 세 가지 정량적 지표 데이터를 확보하였다. 소셜로봇의 디자인 감성은 (1) 기존의 디자인평가 문헌과 (2) 소셜로봇 제품 후기와 블로그 등의 온라인 구전, (3) 소셜로봇 디자인에 대한 정성적인 인터뷰를 통해 도출하였다. 이후 사용자 설문을 통하여 각각의 소셜로봇에 대해 사용자가 느끼는 감성과 태도에 대한 평가를 수집하였다. 세부적인 감성 평가항목 23개에 대하여, 차원 축소 방법론을 통해 6개의 감성 차원을 도출하였다. 이어서 도출된 감성 차원들이 사용자의 소셜로봇에 대한 태도에 미치는 영향을 검증하기 위해 회귀분석을 수행하여 감성과 태도 간의 관계를 파악해 보았다. 마지막으로 정량적으로 수집된 소셜로봇의 외형에 대한 지표가 감성과 태도 간의 관계에 영향을 줄 수 있음을 검증하기 위해 조절회귀분석을 수행하였다. 기술적인ABOT Database 속성 지표들과 감성 차원들 간의 순수조절효과를 확인하고, 도출된 조절효과에 대한 시각화를 수행하여 외형, 감성, 그리고 태도 간의 관계를 다각적인 관점에서 해석하였다. 본 연구는 이종간 데이터를 연결하여 소셜로봇의 기술적 속성과 소비자 감성, 태도까지 변수 간 관계를 총체적으로 실증 분석했다는 점에서 이론적 공헌을 가지며, 소셜로봇 디자인 개발 전략에 대한 의사결정을 지원하기 위한 기준으로 소비자 감성의 활용 가능성을 제안하였다는 실무적 의의를 가진다.
소셜네트워크서비스(SNS)의 성장과 함께 다양한 형태의 SNS가 등장했다. 상호작용성, 정보 교류, 엔터테인먼트 등 다양한 이용 동기를 바탕으로 SNS 이용자 또한 빠르게 증가하는 추세이다. 그중 페이스북은 대표하는 SNS 채널로서 기업에서도 페이스북 페이지를 활용해 홍보 채널로 활용하기 시작했다. 이를 위해 운영 초기, 기업은 팬 수 확보에 나섰고 그 결과 최근 기업 페이스북 팬 수는 많게는 수백만에 이를 정도로 늘어났다. 기업의 목표는 팬 수 확보를 넘어 콘텐츠를 통해 고객에게 기업 브랜드 이미지를 재고하고, 나아가 소통하는 수단으로 활용하고 있다. 이를 평가하는 주요 수치가 바로 본 연구의 종속변수에 해당하는 페이스북의 '좋아요', '댓글', '공유', '클릭 수' 등이다. 해당 수치 달성을 위해 콘텐츠 제작에 대한 고민이 선행되어야 하는데, 본 연구에서는 콘텐츠 제작 고려 사항을 3가지로 나눠 독립변수를 구성하였다. 콘텐츠 소재, 콘텐츠 구조, 메시지 스타일 등이 페이스북의 이용자 행동에 미치는 영향을 회귀분석을 이용해 분석하였다. 종속변수의 경우, 콘텐츠상에 모든 이용자의 행동 '전체 클릭 수'로 설정하였다. 본 연구에서는 각 독립 변수를 기존 연구 문헌을 통해 정의하고, 종속변수에 미치는 영향을 분석하였는데, '전체 클릭 수'의 경우, '자사연관', '실생활 관여도', '격식 x 관여도' 등의 변수가 유의미한 영향을 갖는 것으로 나타났다. 연구 결과를 통해, 콘텐츠 목적에 따른 최적화된 콘텐츠 전략을 제시함으로써, 기업 페이스북 운영자와 콘텐츠 제작자의 운영, 제작 전략에 기여할 수 있을 것으로 보인다.
현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.