• Title/Summary/Keyword: large scale reasoning

Search Result 41, Processing Time 0.028 seconds

Confidence Value based Large Scale OWL Horst Ontology Reasoning (신뢰 값 기반의 대용량 OWL Horst 온톨로지 추론)

  • Lee, Wan-Gon;Park, Hyun-Kyu;Jagvaral, Batselem;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.553-561
    • /
    • 2016
  • Several machine learning techniques are able to automatically populate ontology data from web sources. Also the interest for large scale ontology reasoning is increasing. However, there is a problem leading to the speculative result to imply uncertainties. Hence, there is a need to consider the reliability problems of various data obtained from the web. Currently, large scale ontology reasoning methods based on the trust value is required because the inference-based reliability of quantitative ontology is insufficient. In this study, we proposed a large scale OWL Horst reasoning method based on a confidence value using spark, a distributed in-memory framework. It describes a method for integrating the confidence value of duplicated data. In addition, it explains a distributed parallel heuristic algorithm to solve the problem of degrading the performance of the inference. In order to evaluate the performance of reasoning methods based on the confidence value, the experiment was conducted using LUBM3000. The experiment results showed that our approach could perform reasoning twice faster than existing reasoning systems like WebPIE.

Distributed In-Memory based Large Scale RDFS Reasoning and Query Processing Engine for the Population of Temporal/Spatial Information of Media Ontology (미디어 온톨로지의 시공간 정보 확장을 위한 분산 인메모리 기반의 대용량 RDFS 추론 및 질의 처리 엔진)

  • Lee, Wan-Gon;Lee, Nam-Gee;Jeon, MyungJoong;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.963-973
    • /
    • 2016
  • Providing a semantic knowledge system using media ontologies requires not only conventional axiom reasoning but also knowledge extension based on various types of reasoning. In particular, spatio-temporal information can be used in a variety of artificial intelligence applications and the importance of spatio-temporal reasoning and expression is continuously increasing. In this paper, we append the LOD data related to the public address system to large-scale media ontologies in order to utilize spatial inference in reasoning. We propose an RDFS/Spatial inference system by utilizing distributed memory-based framework for reasoning about large-scale ontologies annotated with spatial information. In addition, we describe a distributed spatio-temporal SPARQL parallel query processing method designed for large scale ontology data annotated with spatio-temporal information. In order to evaluate the performance of our system, we conducted experiments using LUBM and BSBM data sets for ontology reasoning and query processing benchmark.

Everyday Physical Reasoning by Qualitative Reasoning (정성적 추론을 이용한 일상의 자연 현상에 대한 추론)

  • Kim, Hyeon-Kyeong
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.3
    • /
    • pp.213-224
    • /
    • 2005
  • To develop a cognitive system with the flexibility and breadth of human reasoning, it's very important to construct a large scale knowledge base which includes commonsense knowledge as well as expert knowledge. This paper introduces a cognitive system which provides a commonsense reasoning for everyday physical phenomena using qualitative reasoning. It is difficult to apply previous qualitative reasoning to commonsense reasoning since it provides reasoning based on abstract concepts which are apart from everyday real world concepts. Our research provides commonsense reasoning based on sketches and real world concepts by integrating qualitative reasoning and general large scale Cyc knowledge base. Our system has been implemented and tested on various examples.

  • PDF

RDFS Rule based Parallel Reasoning Scheme for Large-Scale Streaming Sensor Data (대용량 스트리밍 센서데이터 환경에서 RDFS 규칙기반 병렬추론 기법)

  • Kwon, SoonHyun;Park, Youngtack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.686-698
    • /
    • 2014
  • Recently, large-scale streaming sensor data have emerged due to explosive supply of smart phones, diffusion of IoT and Cloud computing technology, and generalization of IoT devices. Also, researches on combination of semantic web technology are being actively pushed forward by increasing of requirements for creating new value of data through data sharing and mash-up in large-scale environments. However, we are faced with big issues due to large-scale and streaming data in the inference field for creating a new knowledge. For this reason, we propose the RDFS rule based parallel reasoning scheme to service by processing large-scale streaming sensor data with the semantic web technology. In the proposed scheme, we run in parallel each job of Rete network algorithm, the existing rule inference algorithm and sharing data using the HBase, a hadoop database, as a public storage. To achieve this, we implement our system and evaluate performance through the AWS data of the weather center as large-scale streaming sensor data.

A Qualitative Knowledge Model for Large Scale Cognitive System (대규모 인지 시스템을 위한 정성적 지식 모델의 개발)

  • Kim Hyeon Kyeong
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.4
    • /
    • pp.15-20
    • /
    • 2004
  • To develop a cognitive system with the flexibility and breadth of human, it's very important to construct a large scale knowledge base which include commonsense knowledge as well as expert knowledge. Efficient knowledge representation and reasoning techniques will play a key role for this. This paper introduce a cognitive system which is based on Cyc knowledge base and augmented with our work on qualitative and spatial representation and reasoning. Our system has been implemented and tested on various examples.

  • PDF

Large Scale Incremental Reasoning using SWRL Rules in a Distributed Framework (분산 처리 환경에서 SWRL 규칙을 이용한 대용량 점증적 추론 방법)

  • Lee, Wan-Gon;Bang, Sung-Hyuk;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.383-391
    • /
    • 2017
  • As we enter a new era of Big Data, the amount of semantic data has rapidly increased. In order to derive meaningful information from this large semantic data, studies that utilize the SWRL(Semantic Web Rule Language) are being actively conducted. SWRL rules are based on data extracted from a user's empirical knowledge. However, conventional reasoning systems developed on single machines cannot process large scale data. Similarly, multi-node based reasoning systems have performance degradation problems due to network shuffling. Therefore, this paper overcomes the limitations of existing systems and proposes more efficient distributed inference methods. It also introduces data partitioning strategies to minimize network shuffling. In addition, it describes a method for optimizing the incremental reasoning process through data selection and determining the rule order. In order to evaluate the proposed methods, the experiments were conducted using WiseKB consisting of 200 million triples with 83 user defined rules and the overall reasoning task was completed in 32.7 minutes. Also, the experiment results using LUBM bench datasets showed that our approach could perform reasoning twice as fast as MapReduce based reasoning systems.

ABox Realization Reasoning in Distributed In-Memory System (분산 메모리 환경에서의 ABox 실체화 추론)

  • Lee, Wan-Gon;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.852-859
    • /
    • 2015
  • As the amount of knowledge information significantly increases, a lot of progress has been made in the studies focusing on how to reason large scale ontology effectively at the level of RDFS or OWL. These reasoning methods are divided into TBox classifications and ABox realizations. A TBox classification mainly deals with integrity and dependencies in schema, whereas an ABox realization mainly handles a variety of issues in instances. Therefore, the ABox realization is very important in practical applications. In this paper, we propose a realization method for analyzing the constraint of the specified class, so that the reasoning system automatically infers the classes to which instances belong. Unlike conventional methods that take advantage of the object oriented language based distributed file system, we propose a large scale ontology reasoning method using spark, which is a functional programming-based in-memory system. To verify the effectiveness of the proposed method, we used instances created from the Wine ontology by W3C(120 to 600 million triples). The proposed system processed the largest 600 million triples and generated 951 million triples in 51 minutes (696 K triple / sec) in our largest experiment.

SSQUSAR : A Large-Scale Qualitative Spatial Reasoner Using Apache Spark SQL (SSQUSAR : Apache Spark SQL을 이용한 대용량 정성 공간 추론기)

  • Kim, Jonghoon;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-116
    • /
    • 2017
  • In this paper, we present the design and implementation of a large-scale qualitative spatial reasoner, which can derive new qualitative spatial knowledge representing both topological and directional relationships between two arbitrary spatial objects in efficient way using Aparch Spark SQL. Apache Spark SQL is well known as a distributed parallel programming environment which provides both efficient join operations and query processing functions over a variety of data in Hadoop cluster computer systems. In our spatial reasoner, the overall reasoning process is divided into 6 jobs such as knowledge encoding, inverse reasoning, equal reasoning, transitive reasoning, relation refining, knowledge decoding, and then the execution order over the reasoning jobs is determined in consideration of both logical causal relationships and computational efficiency. The knowledge encoding job reduces the size of knowledge base to reason over by transforming the input knowledge of XML/RDF form into one of more precise form. Repeat of the transitive reasoning job and the relation refining job usually consumes most of computational time and storage for the overall reasoning process. In order to improve the jobs, our reasoner finds out the minimal disjunctive relations for qualitative spatial reasoning, and then, based upon them, it not only reduces the composition table to be used for the transitive reasoning job, but also optimizes the relation refining job. Through experiments using a large-scale benchmarking spatial knowledge base, the proposed reasoner showed high performance and scalability.

MRQUTER : A Parallel Qualitative Temporal Reasoner Using MapReduce Framework (MRQUTER: MapReduce 프레임워크를 이용한 병렬 정성 시간 추론기)

  • Kim, Jonghoon;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.231-242
    • /
    • 2016
  • In order to meet rapid changes of Web information, it is necessary to extend the current Web technologies to represent both the valid time and location of each fact and knowledge, and reason their relationships. Until recently, many researches on qualitative temporal reasoning have been conducted in laboratory-scale, dealing with small knowledge bases. However, in this paper, we propose the design and implementation of a parallel qualitative temporal reasoner, MRQUTER, which can make reasoning over Web-scale large knowledge bases. This parallel temporal reasoner was built on a Hadoop cluster system using the MapReduce parallel programming framework. It decomposes the entire qualitative temporal reasoning process into several MapReduce jobs such as the encoding and decoding job, the inverse and equal reasoning job, the transitive reasoning job, the refining job, and applies some optimization techniques into each component reasoning job implemented with a pair of Map and Reduce functions. Through experiments using large benchmarking temporal knowledge bases, MRQUTER shows high reasoning performance and scalability.

Study on Evaluating a Large Scale Context-Aware System (Large-scale 맥락 인식 시스템의 평가 방법에 대한 연구)

  • Oh, Yoo-Soo;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02b
    • /
    • pp.375-380
    • /
    • 2007
  • 맥락 정보와 맥락 인식 시스템에 대한 연구는 지난 10 여 년 동안 유비쿼터스 컴퓨팅 분야에서 중요한 이슈로 다루어졌다. 대부분의 맥락 인식 시스템은 위치 정보와 같이 단일 형태의 맥락 정보를 위해서 설계되었거나 연구실 수준의 크기로 제한되었다. 그러나 많은 종류의 센서와 actuator 를 포함하고 다수의 관리 도메인으로 확장 가능한 스케일이 큰 시스템에 대한 개발 및 평가는 여전히 미흡한 수준이다. 특히, 맥락 퓨전과 추론 구조를 가지는 Large-scale 의 맥락 인식 시스템에 대한 평가 방법이 필요한 실정이다. 본 논문에서는 휴리스틱 평가를 이용한 Large-scale 맥락 인식 시스템의 평가 방법에 대하여 제안한다. 그리고 우리는 동적인 맥락 인식 시스템을 지원하고 맥락 퓨전 및 추론을 위한 메커니즘을 포함하는 기본 구조에 대해서 자세히 설명한다. 맥락 인식 시스템 평가를 위해서 제안된 접근법은 사용자 인터페이스 도메인에서 잘 알려진 전문가에 의한 평가 방법으로 Large-scale 맥락 인식 시스템에 적합하도록 특별히 선택된 heuristics 집합을 이용하는 휴리스틱 평가(Heuristic Evaluation)이다.

  • PDF