• Title/Summary/Keyword: large plasmid

Search Result 79, Processing Time 0.021 seconds

Preparation and Characterization of the Histidine-graft-Low Molecular Weight Water-Soluble Chitosan as a Gene Carrier (유전자 전달체로서 히스티딘이 결합된 저분자량 수용성 키토산의 제조와 특성)

  • Park, Jun-Kyu;Kim, Dong-gon;Choi, Changyong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.607-611
    • /
    • 2007
  • To improve transfection efficiency, we prepared histidine-low molecular weight water-soluble chitosan (LMWSC) having the potential to form complex with DNA as a cationic polymer. Histidine-LMWSC was synthesized by the esterification reaction and removing phthaloyl group. The histidine-LMWSC was characterized using FT-IR, $^1H$ NMR spectra. Histidine-LMWSC was complexed with plasmid DNA (pDNA) in various polymer/DNA (N/P) weight ratios, and the complex was identified using gel retardation assay. The particle sizes of the hisitidine-LMWSC/DNA complexes were measured on a DLS instrument by fixing the histidine-LMWSC/DNA weight ratio of 10/1. Owing to the utilization of a large excess amount of cationic LMWSC against anionic DNA, the particle size of histidine-LMWSC/DNA complexes was in the range of 100~200 nm. Therefore, histidine-LMWSC will be useful in the development of gene carriers.

Overexpression of aprE2, a Fibrinolytic Enzyme Gene from Bacillus subtilis CH3-5, in Escherichia coli and the Properties of AprE2

  • Jeong, Seon-Ju;Cho, Kye Man;Lee, Chang Kwon;Kim, Gyoung Min;Shin, Jung-Hye;Kim, Jong Sang;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.969-978
    • /
    • 2014
  • The aprE2 gene with its prosequence from Bacillus subtilis CH3-5 was overexpressed in Escherichia coli BL21(DE3) by using plasmid pET26b(+). After IPTG induction, active and mature AprE2 was produced when cells were grown at $20^{\circ}C$, whereas inactive and insoluble enzyme was produced in a large amount when cells were grown at $37^{\circ}C$. The insoluble fraction was resuspended with 6 M guanidine-HCl and dialyzed against 2 M Tris-HCl (pH 7.0) or 0.5 M sodium acetate (pH 7.0) buffer. Then active AprE2 was regenerated and purified by a Ni-NTA column. Purified AprE2 from the soluble fraction had a specific activity of $1,069.4{\pm}42.4U/mg$ protein, higher than that from the renatured insoluble fraction. However, more active AprE2 was obtained by renaturation of the insoluble fraction. AprE2 was most stable at pH 7 and $40^{\circ}C$, respectively. The fibrinolytic activity of AprE2 was inhibited by PMSF, but not by EDTA and metal ions. AprE2 degraded $A{\alpha}$ and $B{\beta}$ chains of fibrinogen quickly, but not the ${\gamma}$-chain. AprE2 exhibited the highest specificity for N-succinyl-Ala-Ala-Pro-Phe-pNA. The $K_m$ and $k_{cat}/K_m$ of AprE2 was 0.56 mM and $3.10{\times}10^4S^{-1}M^{-1}$, respectively.

Construction and Characterization of Vector Expressing Low Level of Translation Factor eIF5B (단백질합성인자 eIF5B의 저 발현 효모벡터의 제조 및 특성)

  • 최상기;송진희;이준행;이병욱;성치남
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • eIF5B is a translation initiation factor that delivers Met-$tRNA^{Met}$ to AUG start codon and subsequently joins the small and large ribosomes. In order to study the function of eIF5B encoded by FUN12, we constructed FUN12 which lacked 5' end of its sequence. We found that this construct lacking almost all of its promoter in pRS plasmid partially complemented slow growth phenotype of fun12 deletion strain. Interestingly, this construct expressed N-terminally truncated eIF5B and its expression level was about 5% of that of wild type eIF5B. Low amount of the eIF5B expressed additionally in fun12 deletion strain played a direct role as a limiting factor for its growth. This limiting factor eIF5B in those strains also modulates activities of overall translation in vitro.

Transformation of 'Ilmibyeo' using pCAMBIA 1300 and Microstructural Investigation of Leaves (pCAMBIA 1300 벡터를 이용한 일미벼의 형질전환 및 잎의 전자현미경적 관찰)

  • Guo, Jia;Seong, Eun-Soo;Kim, Young-Hwa;Jo, Hye-Jeong;Cho, Joon-Hyeong;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.5
    • /
    • pp.437-441
    • /
    • 2007
  • The argE gene of E.coli was introduced into #Ilmibyeo# cultivar of rice by Agrobacterium tumefaciens and a large number of transgenic plants were produced. Embryogenic calli were co-cultivated with A. tumefaciens strain AGL1 carrying the plasmid pCAMBIA1300 containing hygromycin resistance(HygR). Transgenic plants showing in vitro resistance to 50mg/L hygromycin were obtained using a selection procedure. Stable integration of argE and HPT genes into chromosomal DNA was proven by southern blot analysis and PCR analysis of genomic isolated from $T_0$ progenies. The fragments of 650 bp(HPT) were detected in transgenic rice lines. The 230 bp(argE) fragments were showed in agarose gel, and detected fragments were matched with size of argE specific primer. The microscopic feature of leaf on scanning electron microscope(SEM) revealed differences between clear and chalky in shape and arrangement of stoma but did not discriminate.

Expression and Purification of Extracellular Solute-Binding Protein (ESBP) in Escherichia coli, the Extracellular Protein Derived from Bifidobacterium longum KACC 91563

  • Song, Minyu;Kim, Hyaekang;Kwak, Woori;Park, Won Seo;Yoo, Jayeon;Kang, Han Byul;Kim, Jin-Hyoung;Kang, Sun-Moon;Van Ba, Hoa;Kim, Bu-Min;Oh, Mi-Hwa;Kim, Heebal;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.601-609
    • /
    • 2019
  • Bifidobacterium longum KACC 91563 secretes family 5 extracellular solute-binding protein via extracellular vesicle. In our previous work, it was demonstrated that the protein effectively alleviated food allergy symptoms via mast cell specific apoptosis, and it has revealed a therapeutic potential of this protein in allergy treatment. In the present study, we cloned the gene encoding extracellular solute-binding protein of the strain into the histidine-tagged pET-28a(+) vector and transformed the resulting plasmid into the Escherichia coli strain BL21 (DE3). The histidine-tagged extracellular solute-binding protein expressed in the transformed cells was purified using Ni-NTA affinity column. To enhance the efficiency of the protein purification, three parameters were optimized; the host bacterial strain, the culturing and induction temperature, and the purification protocol. After the process, two liters of transformed culture produced 7.15 mg of the recombinant proteins. This is the first study describing the production of extracellular solute-binding protein of probiotic bacteria. Establishment of large-scale production strategy for the protein will further contribute to the development of functional foods and potential alternative treatments for allergies.

Implications of Growth Arrest Induced by Overproduction of RraB in Escherichia coli (RraB의 발현에 따른 대장균의 성장 저해의 원인 규명)

  • Ryou, Sang-Mi;Yeom, Ji-Hyun;Go, Ha-Young;Shin, Eun-Kyoung;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.223-227
    • /
    • 2010
  • RNase E plays a major role in the degradation and processing of a large number of RNA transcripts in Escherichia coli and forms the core component of the degradosome, a large protein complex involved in RNA metabolism. RraA and RraB are recently discovered protein inhibitors of RNase E and are evolutionarily conserved. In this study, we observed that, unlike RraA, overexpression of RraB did not rescue growth arrest of E. coli cells overexpressing RNase E. To examine whether this phenomenon stems from differential inhibitory effects of RraA and RraB on RNase E substrates, we analyzed three in vivo RNase E substrates. The results showed that RraA inhibited RNase E activity more efficiently than RraB on the degradation of RNA I, which controls the copy number of ColE1-type plasmid, and rpsO mRNA encoding ribosomal protein S15, while RraB was unable to inhibit the processing of pM1 RNA, a precursor of the RNA component of RNase P, by RNase E. Our results imply that RraB inhibits RNase E activity in a more substrate-dependent manner than RraA and this property of RraB may explain why overexpression of RraB could not rescue cells overexpressing RNase E from growth arrest.

Identification and Functional Analysis of Escherichia coli RNase E Mutants (Escherichia coli 리보핵산 내부분해효소 RNase E의 돌연변이체 선별 및 특성분석)

  • Shin, Eun-Kyoung;Go, Ha-Young;Kim, Young-Min;Ju, Se-Jin;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.325-330
    • /
    • 2007
  • RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell and expression of N-terminal domain consisted of 1-498 amino acids (N-Rne) is sufficient to support normal cellular growth. By utilizing these properties of RNase E, we developed a genetic system to screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that lead to various phenotypes. Using this system, we identified three kinds of mutants. A mutant N-Rne containing amino acid substitution in the S1 domain (I6T) of the protein was not able to support survival of E. coli cells, and another mutant N-Rne with amino acid substitution at the position 488 (R488C) in the small domain enabled N-Rne to have an elevated ribonucleolytic activity, while amino acid substitution in the DNase I domain (N305D) only enabled N-Rne to support survival of E. roli cells when the mutant N-Rne was over-expressed. Analysis of copy number of ColEl-type plasmid revealed that effects of amino acid substitution on the ability of N-Rne to support cellular growth stemmed from their differential effects on the ribonucleolytic activity of N-Rne in the cell. These results imply that the genetic system developed in this study can be used to isolate mutant RNase E with various phenotypes, which would help to unveil a functional role of each subdomain of the protein in the regulation of RNA stability in E. coli.

Isolation and Characterization of mas1+ of Schizosaccharomyces pombe, a Homologue of Human CIP29/Hcc-1 Involved in the Regulation of Cell Division (세포분열에 관여하는 인간의 CIP29/Hcc1 유전자와 상동성을 가지는 분열형 효모의 새로운 유전자 mas1+의 특성분석)

  • Cha, Jae-Young;Shin, Sang-Min;Ha, Se-Eun;Lee, Jung-Sup;Park, Jong-Kun
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1666-1677
    • /
    • 2011
  • The regulation of gene expression plays an important role in cell cycle controls. In this study, a novel gene, the $mas1^+$($\underline{mi}$tosis $\underline{as}$sociated protein) gene, a homolog of human CIP29/Hcc1, was isolated and characterized from fission yeast Schizosaccharomyces pombe (S. pombe) using a gene-specific polymerase chain reaction. The isolated gene contained a complete open reading frame capable of encoding 245 amino acid residues with a typical promoter, as judged by nucleotide sequence analysis. It was also found that a PCB ($\underline{p}$ombe cell $\underline{c}$ycle $\underline{b}$ox) is located in the promoter region, which controls M-$G_1$ specific transcription in S. pombe. The quantitative analysis of the $mas1^+$ transcript against $adh1^+$ showed that the pattern of expression is similar to that of the septation index. Cytokinesis of mas1 mutant was greatly delayed at $25^{\circ}C$ and $36^{\circ}C$, and a large number of multi-septate cells were produced. The mas1 mutant had 2C, 4C and 6C DNA contents, as determined by FACS analysis. In addition, the number of multi-septate cells significantly increased. When cells were cultured in nitrogen starvation medium to increase proliferation, the abnormal phenotypes of mas1 mutant dramatically increased. These phenotypes could be rescued by an overexpression of the $mas1^+$ gene. The mas1 protein localized in the nuclei of S. pombe and human HeLa cells, as evidenced by Mas1-EGFP signals. The abnormal growth pattern and the morphology of mas1 mutant were complemented by a plasmid carrying human CIP29/Hcc-1cDNA. In addition, CIP29 /Hcc-1 transcript level increased in active cell proliferation stages in the developing mouse embryos. These results indicate that the $mas1^+$ ishomologous to the human CIP29/Hcc1 gene and is involved in cytokinesis and cell shape control.

Expression and Regulatory Analysis of Sporulation Gene (spo 5) in Schizosaccharomyces pombe (Schizosaccharomyces pombe 포자형성유전자 (spo 5)의 발현조절기구의 해석)

  • KIM Dong-Ju;SHIMODA Chikasi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • Sporulation in the fission yeast Schizosaccharomyces pombe has been regarded as an important model of cellular development and differentiation. S. pombe cells proliferate by mitosis and binary fission on growth medium. Deprivation of nutrients especially nitrogen sources, causes the cessation of mitosis and initiates sexual reproduction by malting between two sexually compatible cell types. Meiosis is then followed in a diploid cell in the absence of nitrogen source. DNA fragment complemented with the mutations of sporulation gene was isolated from the S. pombe gene library constructed in the vector, pDB 248' and designated as pDB (spo 5)1. We futher analyzed six recombinant plasmids, pDB (spo 5)2, pDB(spo 5)3, pDB(spo 5)4, pDB(spo 5)5, pDB(spo 5)6, pDB(spo 5)7, and found each plasmids is able to rescue the spo 5-2, spo 5-3, spo 5-4, spo 5-5, spo 5-6, spo 5-7, mutations, respectively. Mapping of the integrated plasmid into the homologous site of the S. pombe chromosomes demonstrated that pDB (spo 5)1, and pDB (spo 5)R1 contained the spo 5 gene. Transcipts of spo 5 gene were analyzed by Northern hybridization. Two transcripts of 3.2 kb and 25 kb were detected with 5 kb Hind III fragment containing a part of the spo 5 gene as a probe. The small mRNA (2.5 kb) appeared only when a wild-type strain was cultured in the absence of nitrogen source in which condition the large mRNA (3.2 kb) was produced constitutively. Appearance of a 2.5 kb spo 5-mRNA depends upon the function of the mei1, mei2 and mei3 genes.

  • PDF

Drug Resistance and R Plasmids of Escherichia coli in Patients and Healthy Individuals in Korea (한국(韓國)의 환자(患者) 및 건강인(健康人)에서 분리(分離)한 E.coli의 약제내성(藥劑耐性) 및 R Plasmids)

  • Seol, Sung-Yong
    • The Journal of the Korean Society for Microbiology
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 1977
  • A total of 665 strains of Escherichia coli isolated in Korea from stools of patients who were treated with antimicrobial drugs, doctors, and students were tested for the drug resistance and distribution of R plasmids. Approximately 25 to 41% of isolates were resistant to chloramphenicol, tetracycline, streptomycin, sulfisemidine and ampicillin(AP), and 9.5% were resistant to kanamycin. Nalidixic acid-resistant strains were only rarely encountered. The prevalence of resistant strains was significantly higher among patients than doctors and students. Strains multiply resistant to four or more drugs were significantly more prevalent among patient isolates than those from doctors and students, while no difference on the incidence of strains resistant to three or less drugs was noted among isolates from the three groups. The persons carrying strains resistant to four or more drugs were more frequently found among patients than doctors and students. Quite large proportions of drug-resistant strains transferred their resistance to drug-sensitive E. coli, with frequent transfer of whole resistance and AP resistance. Strains having higher multiplicity of resistance showed a tendency toward higher incidence of resistance transfer, irrespective of the origins of strains.

  • PDF