• 제목/요약/키워드: large displacement effect

검색결과 289건 처리시간 0.021초

나노 가이드 시스템에서 초기 변위의 영향에 관한 연구 (Effect of an Initial Displacement on a Nano-guiding System)

  • 이무연;권대갑;이동연
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.346-354
    • /
    • 2006
  • This study shows that the system performance of a positioning system composed of a piezoelectric actuator-driven flexure guide depends largely on the preload applied on the flexure guide and the driving input amplitude. We used a flexure guided system that had an original resonant frequency of 54 Hz. Our experiment showed that we could increase the driving bandwidth above the original resonant frequency, for a case involving a large preload and a small input amplitude. Results show that there is a specific 'separation frequency' where the response of the moving mass of the flexure system decouples from the response of the piezoelectric actuator, and this specific separation frequency can be selected by a proper choice of the preload and the input amplitude. To find the separation frequency, sine sweep tests were performed. To confirm the increased system bandwidth frequency, open-loop sine tracking experiments were performed. Test results show that the system responds very well up to 130 Hz frequency higher than the original natural frequency (54 Hz).

Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels

  • Arefi, Mohammad;Mohammadi, Masoud;Tabatabaeian, Ali;Dimitri, Rossana;Tornabene, Francesco
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.525-536
    • /
    • 2018
  • This paper focuses on the application of the first-order shear deformation theory (FSDT) to thermo-elastic static problems of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical pressure vessels. A symmetric displacement field is considered as unknown function along the longitudinal direction, whereas a linear distribution is assumed along the thickness direction. The cylindrical pressure vessels are subjected to an inner and outer pressure under a temperature increase. Different patterns of reinforcement are applied as distribution of CNTs. The effective material properties of FG-CNTRC cylindrical pressure vessels are measured based on the rule of mixture, whereas the governing equations of the problem are here derived through the principle of virtual works. A large parametric investigation studies the effect of some significant parameters, such as the pattern and volume fraction of CNTs, on the longitudinal distribution of deformation, strain and stress components, as useful tool for practical engineering applications.

단섬유 금속복합체에서의 복합강화효과에 관한연구 (A Study on the Composite Strengthening Effect in Metal Matrix Composites)

  • 김홍건
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.61-66
    • /
    • 1996
  • An overall feature to simulate composite behavior and to predict closed solution has been performed for the application to the stress analysis in a discontinuous composite solid. To obtain the internal field quantities of composite, the micromechanics analysis and finite element analysis (FEA) were implemented. For the numerical illustration, an aligned axisymmetric single fiber model has been employed to assess field quantities. Further, a micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites has been developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparions between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. It was found that the proposed simulation methodology for stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical behavior.

  • PDF

Thermal post-buckling analysis of uniform slender functionally graded material beams

  • Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.545-560
    • /
    • 2010
  • Two or more distinct materials are combined into a single functionally graded material (FGM) where the microstructural composition and properties change gradually. Thermal post-buckling behavior of uniform slender FGM beams is investigated independently using the classical Rayleigh-Ritz (RR) formulation and the versatile Finite Element Analysis (FEA) formulation developed in this paper. The von-Karman strain-displacement relations are used to account for moderately large deflections of FGM beams. Bending-extension coupling arising due to heterogeneity of material through the thickness is included. Simply supported and clamped beams with axially immovable ends are considered in the present study. Post-buckling load versus deflection curves and buckled mode shapes obtained from both the RR and FEA formulations for different volume fraction exponents show an excellent agreement with the available literature results for simply supported ends. Response of the FGM beam with clamped ends is studied for the first time and the results from both the RR and FEA formulations show a very good agreement. Though the response of the FGM beam could have been studied more accurately by FEA formulation alone, the authors aim to apply the RR formulation is to find an approximate closed form post-buckling solutions for the FGM beams. Further, the use of the RR formulation clearly demonstrates the effect of bending-extension coupling on the post-buckling response of the FGM beams.

Online damage detection using pair cointegration method of time-varying displacement

  • Zhou, Cui;Li, Hong-Nan;Li, Dong-Sheng;Lin, You-Xin;Yi, Ting-Hua
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.309-325
    • /
    • 2013
  • Environmental and operational variables are inevitable concerns by researchers and engineers when implementing the damage detection algorithm in practical projects, because the change of structural behavior could be masked by the conditions in a large extent. Thus, reliable damage detection methods should have a virtue of immunity from environmental and operational variables. In this paper, the pair cointegration method was presented as a novel way to remove the effect of environmental variables. At the beginning, the concept and procedure of this approach were introduced, and then the theoretical formulation and numerical simulations were put forward to illustrate the feasibility. The jump exceeding the control limit in the residual indicates the occurrence of damage, while the direction and magnitude imply the most potential damage location. In addition, the simulation results show that the proposed method has strong ability to resist the noise.

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.

Performance evaluation of in-service open web girder steel railway bridge through full scale experimental investigations

  • Sundaram, B. Arun;Kesavan, K.;Parivallal, S.
    • Structural Monitoring and Maintenance
    • /
    • 제6권3호
    • /
    • pp.255-268
    • /
    • 2019
  • Civil infrastructures, such as bridges and tunnels are most important assets and their failure during service will have significant economic and social impact in any country. Behavior of a bridge can be evaluated only through actual monitoring/measurements of bridge members under the loads of interest. Theoretical analysis alone is not a good predictor of the ability of a bridge. In some cases, theoretical analyses can give less effect than actual since theoretical analyses do not consider the actual condition of the bridge, support conditions, level of corrosion and damage in members and connections etc. Hence actual measurements of bridge response should be considered in making decisions on structural integrity, especially in cases of high value bridges (large spans and major crossings). This paper describes in detail the experimental investigations carried out on an open web type steel railway bridge. Strain gages and displacement transducers were installed at critical locations and responses were measured during passage of locomotives. Stresses were evaluated and extrapolated to maximum design loading. The responses measured from the bridge were within the permissible limits. The methodology adopted shall be used for assessing the structural integrity of the bridge for the design loads.

시공단계를 고려한 비탈면의 안정성 검토를 통한 비탈면 활동원인 연구 (A Study on the Collapse Reason by Slope Stability Analysis Considering Construction Stages)

  • 변요셉;장현길;정경식;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제12권8호
    • /
    • pp.25-31
    • /
    • 2011
  • 최근 우기 시 집중호우로 인한 보강토 옹벽 및 비탈면의 붕괴는 빈번히 발생하고 있으며 더욱 인명사고로 이어지고 있다. 이에 본 논문에서는 집중호우로 인한 보강토 옹벽의 붕괴된 사례를 통해 보강토 옹벽의 균열 및 비탈면활동의 원인을 분석한 내용을 다루었고, 시공단계를 고려한 유한요소해석을 실시하여 비탈면의 파괴원인 분석 및 거동특성을 파악하였다. 연구결과 집중호우에 의한 보강토 옹벽의 변위는 증가하는 것으로 나타났으며, 그 증가폭도 큰 것으로 나타났다. 이와 같은 결과를 통해 말뚝 항타로 인해 보강토 옹벽의 붕괴에 일부 영향을 미칠 수 있는 것으로 분석되었다.

Study on the effect of corrosion defects on VIV behavior of marine pipe using a new defective pipe element

  • Zhang, He;Xu, Chengkan;Shen, Xinyi;Jiang, Jianqun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.552-568
    • /
    • 2020
  • After long-term service in deep ocean, pipelines are usually suffered from corrosions, which may greatly influence the Vortex-Induced Vibration (VIV) behavior of pipes. Thus, we investigate the VIV of defective pipelines. The geometric nonlinearity due to large deformation of pipes and nonlinearity in vortex-induced force are simulated. This nonlinear vibration system is simulated with finite element method and solved by direct integration method with incremental algorithm. Two kinds of defects, corrosion pits and volumetric flaws, and their effects of depth and range on VIV responses are investigated. A new finite element is developed to simulate corrosion pits. Defects are found to aggravate VIV displacement response only if environmental flow rate is less than resonance flow rate. As the defect depth grows, the stress responses increase, however, the increase of the defect range reduces the stress response at corroded part. The volumetric flaws affect VIV response stronger than the corrosion pits.

Delineation of the evacuation route plan, relief camp and prioritization using GIScience

  • Joy, Jean;Kanga, Shruti;Singh, Suraj Kumar;Sudhanshu, Sudhanshu
    • Advances in environmental research
    • /
    • 제10권1호
    • /
    • pp.1-15
    • /
    • 2021
  • Rising urban flood patterns are a universal phenomenon and a significant challenge for city government and urban planners worldwide. Urban flood problems range from relatively localized incidents to substantial incidents, which lead to cities being flooded for a few hours to several days. Therefore, the effect may be widespread, such as the temporary displacement of individuals, disruption to civic facilities, water quality degradation and the possibility of epidemics. The problems raised by urban flooding are highly challengeable and compound by ongoing climate change, with adverse implications for changes in rainfall and gaps in intra-urban rainfall distribution. Unplanned construction and invasions of large houses along rivers and watercourses have interfered in natural rivers and watercourses. As a result, the runoff has risen in proportion to the urbanization of the urban floods. The location of the relief camp and the priority for evacuation were determined, and the safest route to avoid floods were established. This method can be used for emergency planning in future flood incidents, and it will help plan disaster preparedness for Panchayat. This study will promote the flood plain's potential use for disaster management and land use planning virtually.