• 제목/요약/키워드: large acceleration

검색결과 595건 처리시간 0.027초

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS

  • KANG HYESUNG;JONES T. W.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.405-412
    • /
    • 2004
  • Cosmological shocks form as an inevitable consequence of gravitational collapse during the large scale structure formation and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration (DSA). We have calculated the evolution of CR modified shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of DSA in 1D quasi-parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc $\ge$ 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that $10^{-4} - 10^{-3}$ of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The CR acceleration efficiency increases with shock Mach number, but it asymptotes to ${\~}50\%$ in high Mach number shocks, regardless of the injection rate and upstream CR pressure. On the other hand, in moderate strength shocks ($M_s {\le} 5$), the pre-existing CRs increase the overall CR energy. We conclude that the CR acceleration at cosmological shocks is efficient enough to lead to significant nonlinear modifications to the shock structures.

Prediction of dynamic behavior of full-scale slope based on the reduced scale 1 g shaking table test

  • Jin, Yong;Kim, Daehyeon;Jeong, Sugeun;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.423-437
    • /
    • 2022
  • The objective of the study is to evaluate the feasibility of the dynamic behavior of slope through both 1 g shaking table test and numerical analysis. Accelerometers were installed in the slope model with different types of seismic waves. The numerical analysis (ABAQUS and DEEPSOIL) was used to simulate 1 g shaking table test at infinite boundary. Similar Acceleration-time history, Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) were obtained, which verified the feasibility of modeling using ABAQUS and DEEPSOIL under the same size. The influence of the size (1, 2, 5, 10 and 20 times larger than that used in the 1 g shaking table test) of the model used in the numerical analysis were extensively investigated. According to the similitude law, ABAQUS was used to analyze the dynamic behavior of large-scale slope model. The 5% Damping Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) at the same proportional positions were compared. Based on the comparison of numerical analyses and 1 g shaking table tests, it was found that the 1 g shaking table test result can be utilized to predict the dynamic behavior of the real scale slope through numerical analysis.

Science High-School Students Understanding of Velocity & Acceleration and of the Motion of Bob When Tension is Removed in a Simple Pendulum

  • Kim, Young-Min;Jeong, Seong-Oh
    • 한국과학교육학회지
    • /
    • 제26권5호
    • /
    • pp.611-619
    • /
    • 2006
  • The aims of this study are to investigate science high school students' understanding of velocity and acceleration of a simple pendulum bob, and to investigate their understanding of inertia and gravitational force in the motion of a pendulum bob when the tension is removed. For the study, 46 students that had already studied the physical, concepts in simple pendulum were sampled from a science high school in a large city in Korea. For a comparison with general high school students' conceptions, 49 students were sampled from a general high school in the same city. The test tool for the investigation consisted of four drawing and simple-answering type questions developed by the authors. The outcomes of the study revealed that a substantial number of science high school students have misconceptions concerning acceleration in pendulum motion, and that many of them do not understand the relationship between force and acceleration. In addition, the results of the study showed that more than 30% of the students drew the path of a bob going along the tangential direction at the highest point of the motion, and approximately 20% of them drew the path of a bob falling straight down at the lowest point of the motion.

ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS

  • KANG HYESUNG
    • 천문학회지
    • /
    • 제36권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Nonthermal particles can be produced due to incomplete thermalization at collisionless shocks and further accelerated to very high energies via diffusive shock acceleration. In a previous study we explored the cosmic ray (CR) acceleration at cosmic shocks through numerical simulations of CR modified, quasi-parallel shocks in 1D plane-parallel geometry with the physical parameters relevant for the shocks emerging in the large scale structure formation of the universe (Kang & Jones 2002). Specifically we considered pancake shocks driven by accretion flows with $U_o = 1500 km\;s^{-l}$ and the preshock gas temperature of $T_o = 10^4 - 10^8K$. In order to consider the CR acceleration at shocks with a broader range of physical properties, in this contribution we present additional simulations with accretion flows with $U_o = 75 - 1500 km\;s^{-l}$ and $T_o = 10^4K$. We also compare the new simulation results with those reported in the previous study. For a given Mach number, shocks with higher speeds accelerate CRs faster with a greater number of particles, since the acceleration time scale is $t_{acc}\;{\propto}\;U_o^{-2}$. However, two shocks with a same Mach number but with different shock speeds evolve qualitatively similarly when the results are presented in terms of diffusion length and time scales. Therefore, the time asymptotic value for the fraction of shock kinetic energy transferred to CRs is mainly controlled by shock Mach number rather than shock speed. Although the CR acceleration efficiency depends weakly on a well-constrained injection parameter, $\epsilon$, and on shock speed for low shock Mach numbers, the dependence disappears for high shock Mach numbers. We present the 'CR energy ratio', ${\phi}(M_s)$, for a wide range of shock parameters and for $\epsilon$ = 0.2 - 0.3 at terminal time of our simulations. We suggest that these values can be considered as time-asymptotic values for the CR acceleration efficiency, since the time-dependent evolution of CR modified shocks has become approximately self-similar before the terminal time.

MERGERS, COSMIC RAYS, AND NONTHERMAL PROCESSES IN CLUSTERS OF GALAXIES

  • SARAZIN CRAIG L.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.433-438
    • /
    • 2004
  • Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. The basic properties of cluster mergers and their effects are discussed. Mergers drive shocks into the intracluster gas, and these shocks heat the intracluster gas. As a result of the impulsive heating and compression associated with mergers, there is a large transient increase in the X-ray luminosities and temperatures of merging clusters. These merger boost can affect X-ray surveys of clusters and their cosmological interpretation. Similar boosts occur in the strong lensing cross-sections and Sunyaev-Zeldovich effect in merging clusters. Merger shock and turbulence associated with mergers should also (re)accelerate nonthermal relativistic particles. As a result of particle acceleration in shocks and turbulent acceleration following mergers, clusters of galaxies should contain very large populations of relativistic electrons and ions. Observations and models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these shocks will also be described. Gamma-ray observations with GLAST seem particularly promising.

Seismic response evaluation of 154 kV transformer porcelain bushing by shaking table tests

  • Chun, Nakhyun;Jeon, Bubgyu;Kim, Sungwan;Chang, Sungjin;Son, Suwon
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.155-165
    • /
    • 2022
  • The use of electricity and communication between electronic devices is increasing daily, which makes the stability of electrical power supply vital. Since the 1990s, large earthquakes have occurred frequently causing considerable direct damage to electrical power facilities as well as secondary damage, such as difficulty in restoring functions due to the interruption of electric power supply. Therefore, it is very important to establish measures to protect electrical power facilities, such as transformers and switchboards, from earthquakes. In this study, a 154 kV transformer whose service life had expired was installed on the base fabricated by simulating the field conditions and conducting the shaking table tests. The dynamic characteristics and seismic behavior of the 154 kV transformer were analyzed through the resonance frequency search test and seismic simulation test that considers the front, rear, left, and right directions. Since the purpose of this study is to analyze the acceleration amplification in the bushing due to the acceleration amplification, the experimental results were analyzed focusing on the acceleration response and the converted acceleration amplification ratio rather than the failure due to the displacement response of the transformer. The seismic force amplification at the transformer bushing was evaluated by simulating the characteristics of electrical power facilities in South Korea, and compared with the IEC TS 61463 acceleration amplification factor. Finally, the amplification factor at zero period acceleration (ZPA) modified for each return period was summarized. The results of this study can be used as data to define the amplification factor at ZPA of the transformer bushing, simulating the characteristics of electrical power facilities in Korea.

천연가스 개조 승용차에 대한 실험적 연구(1) - 연비, 배기 및 주행 성능 (Experimental Study on Natural Gas Conversion Vehicle(1) - Fuel Economy, Emission and Roadability)

  • 김형구;김인옥;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.410-419
    • /
    • 2015
  • In this study, the roadability, fuel economy and emission characteristics were evaluated for a natural gas converted vehicle. The results are as follows; Not only the shortage of power was observed in stall test, but also large deterioration of acceleration performance was exposed in roadability. Compared to the original LPG system, the acceleration is 76% in start acceleration and 45 ~ 65% in overtaking acceleration, especially the decline became larger when air conditioner is at work. Furthermore, because the mapping data, which controls the injection depending on driving condition, do not match up with injection system, the failure of air-fuel ratio feedback control occurs resulting from the large gap between the required and the really supplied amount of fuel. This failure cause the exhaust gas to emit without catalytic conversion and the fuel economy based on the fuel heat value to get worse 22% in the mode test and 16% in road test respectively. In addition, the existing injection system does not secure enough fuel at the starting so that it may lead to the fail of clod start, the deterioration of hot start and inharmonic of engine at the idle after start.

하부구조의 강성변화에 따른 대공간구조물의 지진거동 (Seismic Response of Large Space Structure with Various Substructure)

  • 김기철;강주원;고현
    • 한국공간구조학회논문집
    • /
    • 제10권3호
    • /
    • pp.81-90
    • /
    • 2010
  • 대공간구조물은 일반 라멘구조와는 다른 동적특성을 가지고 있으며, 이런 동적특성에 관해 많은 연구가 수행되고 있다. 그러나 대부분의 연구는 특정 형태의 대공간구조물에 대해 수행되었으며, 내진설계를 위해 직접적으로 이용 가능한 연구결과는 매우 제한적이다. 본 연구에서는 대공간구조물의 기본적인 동적특성을 내재한 트러스-아치구조물을 대상으로 양단의 기둥의 길이가 다른 경우에 트러스-아치구조물의 지진응답변화를 분석하고자 한다. 양단 기둥 길이의 차이에 따라, 가속도 응답이 수평방향에 비해 수직방향에서 더 많은 영향을 받는다. 따라서 상부구조물을 지지하는 하부구조물의 강성이 다른 경우에 대공간구조물의 내진설계에 있어서 수직방향 응답에 대한 고려가 더욱 많이 요구된다.

  • PDF

축 방향 가속을 받는 보 구조물의 동적 안정성 해석 (Dynamic Stability Analysis of an Axially Accelerating Beam Structure)

  • 은성진;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1053-1059
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam structure is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively large unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.

관성능률 추정과 가속도 전향보상을 이용한 유도전동기의 속도제어 성능향상 (Improvement of Speed Control Performance using Acceleration Feedforward and Incrtia Identification for the Induction Motor)

  • 이재옥;김상훈
    • 전력전자학회논문지
    • /
    • 제6권1호
    • /
    • pp.90-97
    • /
    • 2001
  • 본 논문에서는 시스템의 광성 추정에 의한 가속도 전향보상 방법을 이용한 새로운 속도제어 기법을 제안한다. 제안된 가속도 전향보상 방법에 의해 속도제어기의 대역폭을 충분히 크게 할 수 없는 백터제어 유도전동기 구동시스템에서 속도제어 성능을 향상시킬 수 있고, 외란 토크에 대한 속도회복특성도 개선될 수 있다. 3.7kW 유도전동기 구동시스템에 대한 시뮬레이션과 실험을 통해 제안된 기법의 타당성을 확인하였다.

  • PDF