• Title/Summary/Keyword: large Eddy simulation

Search Result 525, Processing Time 0.025 seconds

Aerodynamic characteristics investigation of Megane multi-box bridge deck by CFD-LES simulations and experimental tests

  • Dragomirescu, Elena;Wang, Zhida;Hoftyzer, Michael S.
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.161-184
    • /
    • 2016
  • Long-span suspension bridges have evolved through the years and with them, the bridge girder decks improved as well, changing their shapes from standard box-deck girders to twin box and multi-box decks sections. The aerodynamic characteristics of the new generation of twin and multiple-decks are investigated nowadays, to provide the best design wind speeds and the optimum dimensions such bridges could achieve. The multi-box Megane bridge deck is one of the new generation bridge decks, consisting of two side decks for traffic lanes and two middle decks for railways, linked between them with connecting beams. Three-dimensional CFD simulations were performed by employing the Large Eddy Simulation (LES) algorithm with a standard Smagorinsky subgrid-scale model, for $Re=9.3{\times}10^7$ and angles of attack ${\alpha}=-4^{\circ}$, $-2^{\circ}$, $0^{\circ}$, $2^{\circ}$ and $4^{\circ}$. Also, a wind tunnel experiment was performed for a scaled model, 1:80 of the Megane bridge deck section, for $Re=5.1{\times}10^5$ and the aerodynamic static coefficients were found to be in good agreement with the results obtained from the CFD-LES model. However the aerodynamic coefficients determined individually, from the CFD-LES model, for each of the traffic and railway decks of the Megane bridge, varied significantly, especially for the downstream traffic deck. Also the pressure distribution and the effect of the spacing between the connecting beams, on the wind speed profiles showed a slight increase in turbulence above the downstream traffic and railway decks.

Numerical simulation of sand dunes using three-dimensional numerical model (3차원 수치모형을 이용한 사구발달 수치모의)

  • Kim, Hyung Suk;Park, Moon Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.281-281
    • /
    • 2017
  • 하천에서 하도불안정(stream instability)으로 인하여 하상의 형태가 변화하고 하상파(sand wave)가 발생한다. 사련(ripple), 사구(dune) 등과 같은 하상파는 흐름저항을 유발하여 홍수시 수위를 증가시킨다. 수리실험 및 수치모형을 이용하여 사련 및 사구의 발달과정 그리고 이를 지나는 난류흐름에 대한 연구가 국외에서는 이루어지고 있지만 국내의 경우 거의 찾아보기 힘들다. 수치모형을 활용한 연구는 주로 횡방향으로 하상파가 일정하다는 가정하에 연직 2차원 수치모형을 적용하였으나 최근 컴퓨터 기술 및 수치기법의 고도화로 3차원 RANS(Reynolds averaged Navier-Stokes) 또는 LES(Large eddy simulation)를 이용한 수치모형이 개발되고 있다. 본 연구에서는 LES에 유사이송 및 하상변동 모형과 결합하여 사구발달에 대한 수치모의를 수행하였다. LES와 유사이송 및 하상변동 모형의 결합은 순간유속성분을 하상변동모형에 직접 적용되기 때문에 난류영향을 고려할 수 있는 것이 장점이다. 특히 사구의 발달에 따라 복잡한 흐름이 발생하며 3차원 와구조가 발생하므로 난류특성의 고려는 필수적이다. 수치모의는 Delft Hydraulics (Bakker et al., 1986)에서 수행한 수리실험 T39를 활용하였다. 수리실험은 길이 100 m, 폭 0.5 m 개수로에서 수행되었으며 평균유속은 0.611 m/s, 수심은 0.436 m이다. 하상파 실험에 사용된 유사입경은 0.78 mm 균일사를 사용하였다. 수치모의 조건은 수리실험과 동일하게 하였으나 계산시간의 효율을 고려하여 흐름방향의 계산영역은 4.0 m로 하고 주기경계조건(periodic boundary condition)을 부여하여 계산을 수행하였다. 수치모의 계산은 사구의 길이 및 파고가 평형상태에 이를 때까지 수행되었다. 수치모의 통해 사구발달에 따른 흐름 및 하상변동 특성을 분석하였다.

  • PDF

The Analysis of Two-phase Flow in a Lean Direct Injection Gas-turbine Combustor (희박연료 직접분사(Lean Direct Injection) 가스터빈 연소기의 이상유동 분석)

  • Lee, Kyobin;Kim, Jong-Chan;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The analysis on two-phase flow in a Lean Direct Injection(LDI) combustor has been investigated. Linearized Instability Sheet Atomization(LISA) and Aerodynamically Progressed Taylor Analogy Breakup(APTAB) breakup models are applied to simulate the droplet breakup process in hollow-cone spray. Breakup model is validated by comparing penetration length and Sauter Mean Diameter(SMD) of the experiment and simulation. In the LDI combustor, Precessing Vortex Core(PVC) is developed by swirling flow and most droplets are atomized along the PVC. It has been confirmed that all droplets have Stokes number less than 1.0.

Study on the transient flow induced by the windbreak transition regions in a railway subject to crosswinds

  • Zheng-Wei, Chen;Syeda Anam, Hashmi;Tang-Hong, Liu;Wen-Hui, Li;Zhuang, Sun;Dong-Run, Liu;Hassan, Hemida;Hong-Kang, Liu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.309-322
    • /
    • 2022
  • Due to the complex terrain around high-speed railways, the windbreaks were established along different landforms, resulting in irregular windbreak transition regions between different subgrade infrastructures (flat ground, cutting, embankment, etc). In this paper, the effect of a windbreak transition on the wind flow around railways subjected to crosswinds was studied. Wind tunnel testing was conducted to study the wind speed change around a windbreak transition on flat ground with a uniform wind speed inflow, and the collected data were used to validate a numerical simulation based on a detached eddy simulation method. The validated numerical method was then used to investigate the effect of the windbreak transition from the flat ground to cutting (the "cutting" is a railway subgrade type formed by digging down from the original ground) for three different wind incidence angles of 90°, 75°, and 105°. The deterioration mechanism of the flow fields and the reasons behind the occurrence of the peak wind velocities were explained in detail. The results showed that for the windbreak transition on flat ground, the impact was small. For the transition from the flat ground to the cutting, the influence was relatively large. The significant increase in the wind speeds was due to the right-angle structure of the windbreak transition, which resulted in sudden changes of the wind velocity as well as the direction. In addition, the height mismatch in the transition region worsened the protective effect of a typical windbreak.

LES study of flow field and aerodynamic forces on a circular cylinder at Re=3900 with focus on grid resolution

  • Hongmiao Jing;Jitao Zhang;Qingkuan Liu;Yangxue Wang
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.175-200
    • /
    • 2023
  • The large eddy simulation (LES) of the flow around a circular cylinder is not only affected by the sub-grid scale (SGS) model but also by the grid resolution of the computational domain. To study the influence of different grids on the LES results, the LES simulations of the flow around a circular cylinder with different grids at Reynolds number (Re) = 3900 was performed. A circular computational domain with different radial growth rates and circumferential and spanwise grid numbers was adopted for the simulations. Meanwhile, the aerodynamic forces, wind pressure coefficients, mean and instantaneous flow fields, and the effect of grid resolution on them were comprehensively analyzed. The results indicate that the lift coefficient, wind pressure coefficient, and recirculation length are significantly affected by the radial growth rate of the grid and the circumferential grid number. The spanwise grid number has a significant influence on the three-dimensionality of the flow and plays an important role in velocity fluctuations in the wake region. Nevertheless, the aerodynamic coefficients and recirculation length are not sufficiently sensitive to the grid number in the spanwise direction. By comparing the results, it can be concluded that suitable and reliable LES results can be obtained when the radial growth rate is 1.03 or 1.05, the circumferential grid number is 160, 200, or 240, and the spanwise grid number is 64. A radial growth rate 1.05, circumferential grid number 160, and spanwise grid number 64 are recommended to reduce the grid amount and further improve the efficiency.

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.

Considerations of Environmental Factors Affecting the Detection of Underwater Acoustic Signals in the Continental Regions of the East Coast Sea of Korea

  • Na, Young-Nam;Kim, Young-Gyu;Kim, Young-Sun;Park, Joung-Soo;Kim, Eui-Hyung;Chae, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.30-45
    • /
    • 2001
  • This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.

  • PDF

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

Numerical analysis of dam breaking problem using SPH (제체의 갑작스런 붕괴로 인한 충격파 수치해석 - SPH (Smoothed Particle Hydrodynamics)를 중심으로)

  • Cho, Yong Jun;Kim, Gweon Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.261-270
    • /
    • 2008
  • Even though there is a great deal of progress in a numerical method of high caliber like SPH, it is very rarely deployed in a water resources community. Despite the great stride in computing environment, depth averaged approach like a nonlinear shallow equation is still efficient tool for flood routing in large watershed, but it can give some misleading information like the inundation height of flood. In this rationale, we numerically simulate the flow into the dry channel, dry channel with an obstacle triggered by the collapse of a two dimensional water column using SPH (Smoothed Particle Hydrodynamics) in order to boost the application of numerical method of high caliber like SPH in a water resources community. As a most severe test of the robustness of SPH, we also carry out the simulation of the flow through a clearance into the wet channel driven by the rapid removal of a water gate. As a hydrodynamic model, we used the Navier-Stokes equation, a numerical integration of which was carried out using SPH. To verify the validity of newly proposed numerical model, we compare the numerically simulated flow with the others in the literature mainly from VOF and MAC, and hydraulic experiments by Martin and Moyce (1952), Koshizuka et al. (1995) and Janosi et al. (2004). It was shown that agreements between the numerical results in this study and hydraulic experiments are remarkable.