• Title/Summary/Keyword: large Eddy simulation

Search Result 525, Processing Time 0.031 seconds

Proper Orthogonal Decomposition Analysis of Flow Characteristics in Hybrid Rocket Engine (POD에 의한 하이브리드 로켓 연소실의 유동특성 해석)

  • Park, Charyeom;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.383-389
    • /
    • 2014
  • POD analysis has been done to investigate the internal flow characteristics using LES calculation results of hybrid rocket combustion chamber. The special emphasis was put on the change in the mode energy distribution caused by the installation of diaphragm compared to the baseline case. Also the comparison was made to investigate the effect of wall blowing on the changes in the mode energy between the regions near and far from the diaphragm. For baseline case, POD results clearly distinguish the primary mode containing most of flow energy from the rest of flow modes (2-9 mode) depicting small scale modes. Also, the increase in the energy of flow modes 2-5 is responsible for the formation of relatively large scale structures due to diaphragm. In addition, the comparison of mode energy distributions of flow fields with diaphragm shows similar patterns in both wall blowing and no blowing case. This implies that the local increase in regression rate just after the diaphragm is directly associated with the increase in energy distributions of 2-5 modes.

The Characteristic of Extinguishment of Engine Nacelle Fire Using a Bluff Body (둔각 물체를 이용한 엔진 나셀 화재 소화 특성)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The purpose of the study is to assess the extinguishing concentration of inert gases in engine nacelle fire. The experiment was performed with a two dimensional rectangular bluff body stabilized flames, where the fuel was ejected to counter flow and co-flow against an oxidizer stream. Two inert gases, $CO_2$ and $N_2$, were used for extinguishing agent in the oxidizer and methane was used for fuel. The main experimental parameters were the direction of injecting fuel, the kinds of agent and the velocity ratio between air and fuel streams, which controlled the mixing characteristic near bluff body and the strength of recirculation zone in the downstream. The result shows the flame structure and the mode were strongly dependent with fuel/air ratio and the fuel jet direction. For both flow configurations, the extinguishing concentration of $CO_2$ was smaller than the $N_2$ because of the large heat capacity of $CO_2$. However, the concentration of inert gasesat blowout was much smaller than those in the cup burner and coflow jet diffusion flames, which implies that the extinction mechanism of bluff body stabilized flames was mainly due to the aerodynamic aspect. Compared to co-flow fuel injection, the extinguishing concentration of inert gases under counter flow configuration was lower. The effect of direction might result from the mixing characteristic and strength of recirculation zonearound a bluff body. More details should be investigated for the characteristic of recirculation zone in the wake of bluff body using the LES(Large Eddy Simulation).

Acoustical Similarity for Small Cooling Fans Revisited (소형 송풍기 소음의 음향학적 상사성에 관한 연구)

  • 김용철;진성훈;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.196-201
    • /
    • 1995
  • The broadband and discrete sources of sound in small cooling fans of propeller type and centrifugal type were investigated to understand the turbulent vortex structures from many bladed fans using ANSI test plenum for small air-moving devices (AMDs). The noise measurement method uses the plenum as a test apparatus to determine the acoustic source spectral density function at each operating conditions similar to real engineering applications based on acoustic similarity laws. The characteristics of fans including the head rise vs. volumetric flow rate performance were measured using a performance test facility. The sound power spectrum is decomposed into two non-dimensional functions: an acoustic source spectral distribution function F(St,.phi.) and an acoustic system response function G(He,.phi.) where St, He, and .phi. are the Strouhal number, the Helmholtz number, and the volumetric flow rate coefficient, respectively. The autospectra of radiated noise measurements for the fan operating at several volumetric flow rates,.phi., are analyzed using acoustical similarity. The rotating stall in the small propeller fan with a bell-mouth guided is mainly due to a leading edge separation. It creates a blockage in the passage and the reduction in the flow rate. The sound power levels with respect to the rotational speeds were measured to reveal the mechanisms of stall and/or surge for different loading conditions and geometries, for example, fans installed with a impinging plate. Lee and Meecham (1993) studied the effect of the large-scale motions like impinging normally on a flat plate using Large-Eddy Simulation(LES) and Lighthill's analogy.[ASME Winter Annual Meeting 1993, 93-WA/NCA-22]. The dipole and quadrupole sources in the fans tested are shown closely related to the vortex structures involved using cross-correlations of the hot-wire and microphone signals.

  • PDF

The Analysis of Fire-Driven Flow and Temperature in The Railway Tunnel with Ventilation (환기를 동반한 철도터널 화재 연기유속 및 온도장 해석)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Lee, Woo-Dong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1794-1801
    • /
    • 2008
  • Fire-driven flow and temperature distribution in a ventilated tunnel was analyzed by Large Eddy Simulation using FDS code. The simulated tunnel is 182m length, 5.4m wide and 2.4m height. A pool fire was located 112m from tunnel entrance and was taken as a heat source of $0.89m^2$. The heat is assumed to be released uniformly throughout the whole simulated time. The fire strength was 2.76MW and the fuel burnt was octane. The parallel computational method was employed to accelerate the computing time and manage the large grid points which is not possible to handle in the one CPU. The total grid points used were $2.4{\times}10^6$ and 7 CPUs were used to calculate the momentum and energy equations. The simulated results were well compared with the experiments.

  • PDF

A study on combustion instability of solid rocket motor with cylinder-slot grain (실린더-슬롯형 그레인을 가진 고체로켓모터의 연소불안정 연구)

  • Lee, Dohyung;Kim, Hongjip
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.371-377
    • /
    • 2020
  • Combustion instability occurred in the combustion test of solid rocket motor with large aspect ration Length/Diameter (L/D) and cylinder-slot grain. As a result of spectral analysis of the pressure perturbation, it was confirmed that the central axis longitudinal frequency was dominant, so that the length of the cylinder part was increased to eliminate the coincidence with acoustic node. In addition, acoustic modal analysis and flow analysis were performed to analyze the cause of instability by unsteady flow structure in solid rocket motors. It was confirmed that the combustion instability is reduced by quantitative comparison of the amplitude and frequencies of the pressure inside the combustion chamber using the grain shape before and after the design change. Finally, a combustion test was performed to verify that the combustion instability was resolved as in the flow analysis.

Evaluation of Surface Wind Forecast over the Gangwon Province using the Mesoscale WRF Model (중규모 수치모델 WRF를 이용한 강원 지방 하층 풍속 예측 평가)

  • Seo, Beom-Keun;Byon, Jae-Young;Lim, Yoon-Jin;Choi, Byoung-Choel
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.158-170
    • /
    • 2015
  • This study evaluates the wind speed forecast near the surface layer using the Weather Research Forecasting with Large Eddy Simulation (WRF-LES) model in order to compare the planetary boundary layer (PBL) parameterization with the LES model in terms of different spatial resolution. A numerical simulation is conducted with 1-km and 333-m horizontal resolution over the Gangwon Province including complex mountains and coastal region. The numerical experiments with 1-km and 333-m horizontal resolution employ PBL parameterization and LES, respectively. The wind speed forecast in mountainous region shows a better forecast performance in 333-m experiment than in 1-km, while wind speed in coastal region is similar to the observation in 1-km spatial resolution experiment. Therefore, LES experiment, which directly simulates the turbulence process near the surface layer, contributes to more accurate forecast of surface wind speed in mountainous regions.

A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet (디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구)

  • Yeom, J.K.;Kim, M.C.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

Large-Eddy Simulation of Turbulent Channel Flow using a Viscous Numerical Wave Tank Simulation Technique (점성 수치파랑수조 구축을 위한 LES 기술의 평판간 난류유동에의 적용)

  • Park, Jong-Chun;Kang, Dae-Hwan;Kim, Bang-Eun;Yoon, Hyeon-Sik;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.204-212
    • /
    • 2003
  • As the first step to investigate the nonlinear interactions between turbulence and marine structures inside a viscous NWT, a LES technique was applied to the turbulent channel flow for $Re_{T}=150$, in this paper. The employed models were 4 types, such as the Smagorinsky model, the Dynamic SGS model, the Structure Function model and the Generalized Normal Stress model. The simulated data in time-series for the LESs were averaged in both time and space and performed statistical analysis. And results of the LESs were compared with those of a DNS developed in the present study and two spectral methods by Yoon et al.(2003) & Kim et al.(1987). It seems to be quite difficult to evaluate their performances to the present problem, but is seen that the accuracy of LESs are still related to the number of grids(or fine grid size).

  • PDF

Analysis of Characteristics for Bank Scour around Low Dam for Difference of Elevation using 3D Numerical Simulation (상하류 수위차에 따른 3차원 수치모의를 이용한 보 접속부 세굴특성 분석)

  • Jeong, Seok-Il;Yeo, Chang-Geon;Yoon, Kwang-Suk;Lee, Seung-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.37-37
    • /
    • 2011
  • 태풍 루사나 매미에 의한 피해사례를 보면 하천 횡단 구조물 본체가 파괴되는 피해 뿐 만 아니라, 구조물과 제방과의 연결부가 세굴되어 붕괴되는 사례가 많이 발생하였다. 하천설계기준(2009)에는 이러한 보와 제방의 연결부 부분을 연결호안이라 하여 관련 기준을 제시하고 있으나, 설치구간의 길이를 정할 때 하천의 규모나 하도의 특성을 고려하지 못하고 일률적으로 결정하도록 하고 있다. 이에 건설기술연구원에서는 상류 Froude 수와 보 높이를 변수로 하는 연결호안 설치 길이에 대한 실험식(2006)을 제시하였다. 하지만 보 접속부 세굴에 영향을 주는 인자는 상류의 Froude 수와 보의 높이 뿐만 아니라, 상 하류 수위차, 보의 형상, 제방의 재료적 특성 등 많은 요인들이 존재한다. 이 중 본 연구에서는 상 하류 수위차와 보 접속부 세굴 범위의 관계를 파악하고자 한다. 보 접속부 세굴에 대한 수치모의에 앞서 Gill(1972)와 Dongol(1990)이 수행하였던 교대세굴 자료를 바탕으로 Flow-3D의 세굴에의 적합성 및 적용성을 검토하였다(그림 2참고). 검토 결과 수치모의의 입력 변수를 조정함으로써 실험값과 가깝게 나타나는 것을 확인하였다. 이렇게 조정된 변수를 이용하여, 보 접속부 세굴에 대한 수치모의는 상 하류의 수위차에 대해 다양한 검토를 하기 위해 상류의 수위를 1.0m로 고정한 채하류부의 수위를 0.2~0.8m까지 0.1m간격으로 변화시켰으며, 유사의 대표 입경은 0.63mm로 주문진 표준사를 가정하였다. 모의 시간은 평형세굴심이 발생할 때까지 수행하였고, 난류모델로는 LES(Large Eddy Simulation)를 채택하였다. 모의 결과 상 하류 수위차가 증가할수록 보 하류부 세굴 길이($L_d$)가 증가 하였으며, 세굴의 폭($B_d$) 역시 증가하였다. 그림 3은 수치모의 결과로 세굴이 발생된 제방의 모습을 도시한 것이다.

  • PDF

A method for removal of reflection artifact in computational fluid dynamic simulation of supersonic jet noise (초음속 제트소음의 전산유체 모사 시 반사파 아티팩트 제거 기법)

  • Park, Taeyoung;Joo, Hyun-Shik;Jang, Inman;Kang, Seung-Hoon;Ohm, Won-Suk;Shin, Sang-Joon;Park, Jeongwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 2020
  • Rocket noise generated from the exhaust plume produces the enormous acoustic loading, which adversely affects the integrity of the electronic components and payload (satellite) at liftoff. The prediction of rocket noise consists of two steps: the supersonic jet exhaust is simulated by a method of the Computational Fluid Dynamics (CFD), and an acoustic transport method, such as the Helmholtz-Kirchhoff integral, is applied to predict the noise field. One of the difficulties in the CFD step is to remove the boundary reflection artifacts from the finite computation boundary. In general, artificial damping, known as a sponge layer, is added nearby the boundary to attenuate these reflected waves but this layer demands a large computational area and an optimization procedure of related parameters. In this paper, a cost-efficient way to separate the reflected waves based on the two microphone method is firstly introduced and applied to the computation result of a laboratory-scale supersonic jet noise without sponge layers.