• 제목/요약/키워드: lapping characteristic

검색결과 6건 처리시간 0.024초

이트리아($Y_2O_3$) 세라믹 래핑가공의 AE 신호 분석 (AE Signal Analysis of Yttria($Y_2O_3$) Ceramic Lapping Process)

  • 차지완;황성철;신태희;이은상
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.7-14
    • /
    • 2010
  • AE(acoustic emission) sensor has been used for a state monitoring and observation during a ultra-precision machining because AE signal, which has high frequency range, is sensitive enough. In case of ceramic fabrication, a monitoring of machining state is important because of its hard and brittle nature. A machining characteristic of ceramic is susceptibly different in accordance with variable machining conditions. In this study, Yttria($Y_2O_3$) ceramic was fabricated using the ultra-precision lapping process with in-process electrolytic dressing(IED) method. And the surface machining characteristic and AE sensor signal were compared and analyzed.

고정 입자 정반을 이용한 사파이어 기판의 연마 특성 연구 (Study on the Lapping Characteristics of Sapphire Wafer by using a Fixed Abrasive Plate)

  • 이태경;이상직;조원석;정해도;김형재
    • Tribology and Lubricants
    • /
    • 제32권2호
    • /
    • pp.44-49
    • /
    • 2016
  • Diamond mechanical polishing (DMP) is a crucial process in a sapphire wafering process to improve flatness and achieve the target thickness by using free abrasives. In a DMP process, material removal rate (MRR) is a key factor to reduce process time and cost. Controlling mechanical parameters, such as velocity and pressure, can increase the MRR in a DMP process. However, there are limitations of using high velocities and pressures for achieving a high MRR owing to their side effects. In this paper, we present the lapping characteristics and improvement of MRR by using a fixed abrasive plate through an experimental study. The change in MRR as a function of velocity and pressure follows Preston's equation. The surface roughness of a wafer decreases as the plate velocity and pressure increases. We observe a sharp decrease in MRR over the lapping time at a high velocity and pressure in the velocity and pressure test. An analysis of surface roughness (Rq and Rpk) indicates that wear of abrasives decreases the MRR sharply. In order to investigate the effect of abrasive wear on the MRR, we utilize a cutting fluid and a rough wafer. The cutting fluid delays the wear of abrasives resulting in improvement of MRR drop. The rough wafer maintains the MRR at a stable rate by self-dressing.

마찰가공에 있어서의 분위기 영향에 관한 연구 제 1장

  • 손명완
    • 대한기계학회논문집
    • /
    • 제5권4호
    • /
    • pp.338-346
    • /
    • 1981
  • Honing, lapping, polishing and superfinishing are applied for a precision machining to finish the metal surface, but these precision machining are micro-cutting by hard and micro-abrasive grains. Frictional machining is the new method to finish mirrorlike surface without using those abrasive grains. The frictional machining produces high pressure and high temperature instantly by compressing a tool material against the metal surface in sliding motion. The metal surface is given plastic deformation and plastic flow by the above mentioned frictional motion, but the surface roughness of the metal surface is influenced by physical and chemical reaction in surrounding atmosphere. Therefore, the atmosphere around the metal optimum atmosphere in the frictional machining. The part 1 of the study was performed in liquid atmospheres. Diesel oil, lubricant, grease, lard oil, bean oil and cutting fluid were used as such atmospheres. Medium carbon steel SM 50 C was used as a workpiece and ceramic tip was applied as a frictional tool. The result of the experiment showed characteristic machining conditions to generate the best surface roughness in each atmospheres.

Grinding Characteristic of Hard Disk Glass by Glass by ELLD Grinding

  • Kim, Gyung-Nyun;Hitoshi Ohmori
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.61-66
    • /
    • 2000
  • In this paper, we discuss the machining characteristics of HDD glass. Glass is now being used globally as a data storage device, Such glasses are usually machined by lapping by this technique requires a long machining time, resulting in low productivity, For this reason, we examine the possibility of EILD grinding in HDD glass workpieces, A move to ELID grinding may result in substantial cost reduction. Our purpose is to investigate the grinding characteristics of HDD glass in ELID grinding. The bonding materials for fixing the abrasives of cast iron, cobalt and bronze are applied, and grinding conditions such as rotation speed and feeding are varied. Results show that with the use of ELID, mirror surfaces can be achieved with high efficiency.

  • PDF

스테인레스 강의 경면가공을 위한 효율적 수퍼피니싱 조건의 결정 (Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Stainless Steel)

  • 김상규;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Stainless steel has some excellent properties as the material for the mechanical component. Purpose of this study is carried out to obtain mirror surface on the surperfinishing of stainless steel with high efficiency. To achieve this, we have conducted a series of polishing experiment for stainless steel using abrasive film from the perspective of oscillation speed, the rotational speed of workpiece, contact roller hardness, contact pressure and feed rate. Abrasive film used this study is a micro-finishing film and a lapping film. Furthermore, the polishing characteristics and efficiency of stainless steel is discussed through measuring optimal polishing time and surface roughness. From the obtained results, it was confirmed that efficient superfinishing conditions and polishing characteristic of Stainless steel can be determined.

실리콘 웨이퍼의 반경 방향에 따른 연삭 특성 평가 (Evaluation of Grinding Characteristics in Radial Direction of Silicon Wafer)

  • 김상철;이상직;정해도;이석우;최헌종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.980-986
    • /
    • 2003
  • As the ultra precision grinding can be applied to wafering process by the refinement of the abrasive, the development of high stiffness equipment and grinding skill, the conventional wafering process which consists of lapping, etching, Ist, 2nd and 3rd polishing could be exchanged to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Futhermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focused on the effect of the wheel path density and relative velocity on the characteristic of ground wafer in in-feed grinding with cup-wheel. It seems that the variation of the parameters in radial direction of wafer results in the non-uniform surface quality over the wafer. So, in this paper, the geometric analysis on grinding process is carried out, and then, the effect of the parameters on wafer surface quality is evaluated

  • PDF