• Title/Summary/Keyword: lap-joint

Search Result 363, Processing Time 0.026 seconds

Non-tubular bonded joint under torsion: Theory and numerical validation

  • Pugno, Nicola;Surace, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.125-138
    • /
    • 2000
  • The paper analyzes the problem of torsion in an adhesive non-tubular bonded single-lap joint. The joint considered consists of two thin rectangular section beams bonded together along a side surface. Assuming the materials involved to be governed by linear elastic laws, equilibrium and compatibility equations were used to arrive at an integro-differential relation whose solution makes it possible to determine torsional moment section by section in the bonded joint between the two beams. This is then used to determine the predominant stress and strain field at the beam-adhesive interface (stress field along the direction perpendicular to the interface plane, equivalent to the applied torsional moment and the corresponding strain field) and the joint's elastic strain (absolute and relative rotations of the bonded beam cross sections). All the relations presented were obtained in closed form. Results obtained theoretically are compared with those given by a three dimensional finite element numerical model. Theoretical and numerical analysis agree satisfactorily.

Fatigue Analysis of Spot-welded Multi-Lap Joint of STS301L Using the Maximum Stress (최대응력을 이용한 STS301L 다중접합 점용접 이음재의 피로해석)

  • 남태헌;정원석;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.101-107
    • /
    • 2003
  • Since stainless steel sheets have good mechanical properties, weldability, appearance and corrosion resistance, they are commonly used as one of the structural materials of the railroad cars or the commercial vehicles which are manufactured by the spat welding. Among the many kinds of spot welded lap joints, it can be found that multi-lap joints are employed in their body structure. But, fatigue strength of these joints is lower than that of base metal due to high stress concentration at the nugget edge of spot weld and is considerably influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic design criterion for the long life design of the spot-welded body structures. In this paper, the stress distribution and deformation around the spot-welded multi-lap joints subjected to tensile shear load was numerically analyzed. Also, the $\Delta$P-Nf curve was obtained by fatigue tests. Using these results, $\Delta$P-Nf curves were rearranged in to the ${\Delta}{\sigma}$-Nf relation with the maximum stress at nugget edge of spot weld.

A methodology for assessing fatigue life of a countersunk riveted lap joint

  • Li, Gang;Renaud, Guillaume;Liao, Min;Okada, Takao;Machida, Shigeru
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 2017
  • Fatigue life prediction of a multi-row countersunk riveted lap joint was performed numerically. The stress and strain conditions in a highly stressed substructure of the joint were analysed using a global/local finite element (FE) model coupling approach. After validation of the FE models using experimental strain measurements, the stress/strain condition in the local three-dimensional (3D) FE model was simulated under a fatigue loading condition. This local model involved multiple load cases with nonlinearity in material properties, geometric deformation, and contact boundary conditions. The resulting stresses and strains were used in the Smith-Watson-Topper (SWT) strain life equation to assess the fatigue "initiation life", defined as the life to a 0.5 mm deep crack. Effects of the rivet-hole clearance and rivet head deformation on the predicted fatigue life were identified, and good agreement in the fatigue life was obtained between the experimental and the numerical results. Further crack growth from a 0.5 mm crack to the first linkup of two adjacent cracks was evaluated using the NRC in-house tool, CanGROW. Good correlation in the fatigue life was also obtained between the experimental result and the crack growth analysis. The study shows that the selected methodology is promising for assessing the fatigue life for the lap joint, which is expected to improve research efficiency by reducing test quantity and cost.

Prediction of Natural Frequency via Change in Design Variable on Connection Area of Lap Joint (겹치기 이음부의 설계변수 변화에 따른 고유진동수의 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.57-62
    • /
    • 2019
  • This paper describes the prediction of eigenfrequencies due to changes in stiffness and mass in the connection area of the lap joint beam in terms of linear and torsional stiffness as well as connection length. The sensitivities of mass and stiffness in the finite element model were derived by using the first-order differential and algebraic equation and were thereafter applied to obtain new natural frequencies that were compared with theoretical exact solutions. Newly predicted natural frequencies due to only a change in stiffness were in relatively good agreement with those in lower modes for rigid joints, while further investigation was needed for flexible joints. On the other hand, only the change in mass resulted in a large discrepancy in the flexible joint case. It may be strongly anticipated that this study will provide a useful tool for estimating modal parameters by change in any design variable, such as the structural dimension, material property, or connection type for a large-scale structure, even though the proposed methodology is currently limited to a jointed beam.

Structural joint modeling and identification: numerical and experimental investigation

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.373-392
    • /
    • 2015
  • In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed first for a two parameter joint model and then for a three parameter model, in which cross coupling terms are also included. Two cases of structural connections have been considered, first with a cantilever beam with support flexibility and then a pair of beams connected through lap joint. The validity of the proposed method is demonstrated through numerical simulation and by experimentation.

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

A Study on the Fatigue Strength of the 3-D Reinforced Composite Joints (3-차원 보강 복합재 체결부의 피로강도 특성 연구)

  • Kim, Ji-Wan;An, Woo-Jin;Seo, Kyeong-Ho;Choi, Jin-Ho
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.322-327
    • /
    • 2022
  • Composite lap joints have been extensively used due to their excellent properties and the demand for light structures. However, due to the weak mechanical properties in the thickness direction, the lap joint is easily fractured. various reinforcement methods that delay fracture by dispersing stress concentration have been applied to overcome this problem, such as z-pinning and conventional stitching. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. I-fiber stitching method is a promising technology that combines the advantages of both z-pinning and the conventional stitching. In this paper, the static and fatigue strengths of the single-lap joints reinforced by the I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process and I-fiber reinforcing effects were evaluated according to adherend thickness and stitching angle. From the experiments, the thinner the composite joint specimen, the higher the I-fiber reinforcement effect, and Ifiber stitched single lap joints showed a 52% improvement in failure strength and 118% improvement in fatigue strength.

Failure Mode and Strength of Unidirectional Composite Single Lap Bonded Joints II. Failure Prediction (일방향 복합재료 Single Lap 접합 조인트의 파손 모드 및 파손 강도 II. 파손 예측)

  • Yi Young-Moo;Kim Chun-Gon;Kim Kwang-Soo
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A methodology is presented for the failure prediction of composite single-lap bonded joints considering both of composite adherend failure and bondline failure. An elastic-perfectly plastic model of adhesive and a delamination failure criterion are used in the methodology. The failure predictions have been performed using finite element method and the proposed methodology. The failure prediction results such as failure mode and strength have very good agreements with the test results of joint specimens with various bonding methods and parameters. The influence of variations in the effective strength (that is, adhesion performance) and plastic behavior of adhesive on the failure characteristics of composite bonded Joints are investigated numerically. The numerical results show that optimal joint strength is archived when adhesive and delamination failure occur in the same time.