We have been studying a deep-learning program that can communicate with other users in online communities since 2017. But there were problems with processing a Korean data set because of Korean characteristics. Also, low usage of GPUs of RNN models was a problem too. In this study, as Natural Language Processing models are improved, we aim to make better results using these improved models. To archive this, we use a Transformer model which includes Self-Attention mechanism. Also we use MeCab, korean morphological analyzer, to address a problem with processing korean words.
Journal of the Korea Society of Computer and Information
/
v.6
no.4
/
pp.6-11
/
2001
After automatic translation system for hangul's romanization based on the World Wide Web converting korean-word. sentence, document to Transliteration letters by applying algorithm based phonological principles. even though a user do not know the basic principles of the usage of Korean-to-Romanization notations. It refers to corresponding character table that has been currently adopted the authority's standard proposition for Korean-to-Romanization notation rule concurrently, add to make possible to convert a machinized code as well. It Provides font for toggling Korean-English mode, insert-edit mode by assigning ASCII codes are hardly used to them. This program could be made in C++ programming language and Unified Modeling Language to implement various font. font-expanding and condensing, alternative printing.
In this study, we select and analyze the slang that is represented in Elistratov's "Dictionary of Russian slang". Through the above analysis, some conclusions were drawn as follows: First, as a social and psychological phenomenon appears universal in all languages, the study of slang generates strict criteria for the analysis. Unlike literary language, listed in the dictionary slang expressions can become obsolete for their short period of usage by native speakers. Therefore, in the following research of the actual data, we have to validate words targeted for analysis. Second, as the result of the analysis it is metaphor for the most part studied rather than metonymy. The semantic derivations as a result of metonymy are used very frequently in real life. But in this study we mainly analyze words, therefore the number of words was less in metonymy than was expected. Third, the basic types of metaphor are appeared as similarity by form, function, and location, and there are varieties of intervening of subjectivity in similarity of emotional impression. Fourth, the metonymy is divided into three cases: the part meaning the whole, the whole meaning the part, and some thing meaning the reality of where it exists. Fifth, not only literary language, but also slang as the 'transitional process' is the most active way of development of new meanings, and there are two methods to transfer main meaning to second meaning.
Visual analytics is an emerging research field that combines the strength of electronic data processing and human intuition-based social background knowledge. This study demonstrates useful visual analytics with Tableau in conjunction with semantic network analysis using examples of sentiment flow and strategic communication strategies via Twitter in a blockchain domain. We comparatively investigated the sentiment flow over time and language usage patterns between companies with a good reputation and firms with a poor reputation. In addition, this study explored the relations between reputation and marketing communication strategies. We found that cryptocurrency firms more actively produced information when there was an increased public demand and increased transactions and when the coins' prices were high. Emotional language strategies on social media did not affect cryptocurrencies' reputations. The pattern in semantic representations of keywords was similar between companies with a good reputation and firms with a poor reputation. However, the reputable firms communicated on a wide range of topics and used more culturally focused strategies, and took more advantages of social media marketing by expanding their outreach to other social media networks. The visual big data analytics provides insights into business intelligence that helps informed policies.
Sung Il Hwang;Joon Seo Lim;Ro Woon Lee;Yusuke Matsui;Toshihiro Iguchi;Takao Hiraki;Hyungwoo Ahn
Korean Journal of Radiology
/
v.24
no.10
/
pp.952-959
/
2023
Large language models (LLMs) such as ChatGPT have garnered considerable interest for their potential to aid non-native English-speaking researchers. These models can function as personal, round-the-clock English tutors, akin to how Prometheus in Greek mythology bestowed fire upon humans for their advancement. LLMs can be particularly helpful for non-native researchers in writing the Introduction and Discussion sections of manuscripts, where they often encounter challenges. However, using LLMs to generate text for research manuscripts entails concerns such as hallucination, plagiarism, and privacy issues; to mitigate these risks, authors should verify the accuracy of generated content, employ text similarity detectors, and avoid inputting sensitive information into their prompts. Consequently, it may be more prudent to utilize LLMs for editing and refining text rather than generating large portions of text. Journal policies concerning the use of LLMs vary, but transparency in disclosing artificial intelligence tool usage is emphasized. This paper aims to summarize how LLMs can lower the barrier to academic writing in English, enabling researchers to concentrate on domain-specific research, provided they are used responsibly and cautiously.
Large language models (LLMs) are rapidly transforming medical writing and publishing. This review article focuses on experimental evidence to provide a comprehensive overview of the current applications, challenges, and future implications of LLMs in various stages of academic research and publishing process. Global surveys reveal a high prevalence of LLM usage in scientific writing, with both potential benefits and challenges associated with its adoption. LLMs have been successfully applied in literature search, research design, writing assistance, quality assessment, citation generation, and data analysis. LLMs have also been used in peer review and publication processes, including manuscript screening, generating review comments, and identifying potential biases. To ensure the integrity and quality of scholarly work in the era of LLM-assisted research, responsible artificial intelligence (AI) use is crucial. Researchers should prioritize verifying the accuracy and reliability of AI-generated content, maintain transparency in the use of LLMs, and develop collaborative human-AI workflows. Reviewers should focus on higher-order reviewing skills and be aware of the potential use of LLMs in manuscripts. Editorial offices should develop clear policies and guidelines on AI use and foster open dialogue within the academic community. Future directions include addressing the limitations and biases of current LLMs, exploring innovative applications, and continuously updating policies and practices in response to technological advancements. Collaborative efforts among stakeholders are necessary to harness the transformative potential of LLMs while maintaining the integrity of medical writing and publishing.
In this paper, I analyzed the usage patterns of Chinese Korean learners in the Korean learners' corpus. To this purpose, I compared NIKL learners' corpus 674,553 words with the native speakers' corpus 1,055,790 words. According to the analysis, Chinese Korean learners used about 28 more adverbs per 1,000 words than native Korean in their writing. And Chinese Korean learners have either overused or underused the high frequency adverbs, the degree of overuse was stronger than underuse. And compared to native speakers, they lacked the diversity of the use of adverbs. From this corpus analysis, we were able to identify the characteristics of Chinese Korean learners' use of adverbs. Korean learners overused adverbs such as '너무, 아주'and modal adverbs '정말, 진짜'to reinforce their own discourse, and they also used a lot of mimetic adverbs due to the influence of teaching. In addition, through the analysis of the learners' corpus, we were able to identify problems with the use of adverbs by Chinese Korean learners. Chinese Korean learners should try to expand available adverbs and diversify their choice of adverbs in their composition. And they should also develop the recognition of written and spoken registers when selecting adverbs.
The purpose of this study is to suggest the possibility of using online corpora for teaching synonyms in Korean. The research included how to develop the effective concordance learning materials for teaching synonyms in Korean using data driven learning(DDL). Because synonyms are similar in meaning and usage, even native speaker can not clearly explain the difference in synonyms. Furthermore, it is not easy to provide proper example sentences for each word, and it is a reality that the differentiation of the synonyms are not sufficiently provided in the Korean textbooks. In recent years, it has been claimed that DDL helps students produce vocabulary as well as comprehend vocabulary. Nevertheless, it is hard to find how the concordance materials should be made for them. In this study, we extract concordance examples from the various kinds of online corpora; written and spoken corpora, korean textbooks, newspapers. We presented how to make corpus-designed activities using concordance materials for teaching Korean synonyms. In order to examine the effects of DDL, five experimental lessons were given to a group of 15 advanced korean learners in the university and follow-up surveys(attitude-questionnaire) were conducted. This study is meaningful in that it proposed a new teaching method in Korean synonym education.
This study analyzes mobile media-based writing aspects in terms of behavior induction under the premise that the digital media environment is built around mobile. The actual space where the digital writes are performed is a separate platform. The platform facilitates interaction by providing tools and rules to provide infra and participate in a variety of participants. In a mobile environment, writing is done through social platforms. In digital media, images are no longer content that supplements text. On the contrary, the tendency to use text as subtitles has been strengthened to enhance the message delivery power of video. The following are the aspects of digital writing based on the platform or application of mobile media. Second is the generalization of "textual extension." Third, the expansion of the 'visual style' of text is obvious. The affordance of mobile media is based on perceived affordance. However, mobile media users are not just aware of and understand the information provided by the media's interface. The active use of media based on the transformation of behavioral induction should be understood as the result of the accumulation of numerous experiences of interactions driven by iteration of performance induced by behavioral induction. The future research, therefore, should be conducted in the direction of analyzing new usage patterns of mobile media instead of staying on the behavioral induction based on understanding the perceived behavioral induction of users.
The log has variable informations that are important and necessary to manage a network when accessed to network servers. These informations are used to reduce a cost and efficient manage a network through the meaningful prediction information extraction from the amount of user access. And, the network manager can instantly monitor the status of CPU, memory, disk usage ratio on network using the SNMP. In this paper, firstly, we have accumulated and analysed the 6 network logs and extracted the informations that used to predict the amount of user access. And then, we experimented the prediction simulation with the time series analysis such as moving average method and exponential smoothing. Secondly, we have simulated the usage ration of CPU, memory, and disk using Xian SNMP simulator and extracted the OID for the time series prediction of CPU, memory, and disk usage ration. And then, we presented the visual result of the variable experiments through the Excel and R programming language.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.