• 제목/요약/키워드: lane tracing

검색결과 6건 처리시간 0.015초

자율주행 제어를 위한 향상된 주변환경 인식 알고리즘 (Improved Environment Recognition Algorithms for Autonomous Vehicle Control)

  • 배인환;김영후;김태경;오민호;주현수;김슬기;신관준;윤선재;이채진;임용섭;최경호
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

도로소음의 예측모델에 대한 비교$\cdot$평가 (Application of Ray Acoustics in Outdoor Noise Propagation : NIC@E)

  • 이규철;김정태
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1131-1136
    • /
    • 1999
  • NIC@E is the software developed by authors. The program provides the noise level in outdoors due to various noise source types : construction machines including blast sources, railroad vehicles and automobiles. It operates in the Windows system. In this paper, a highway traffic noise has been evaluated using various types of approach : Ray-tracing method, NIRI method, JAS method. In order to compare the noise estimation performance for various models, a measurement is conducted on a 8 lane express highway at the distance of 25 m and 50 m from the lane. The result shows that the ray tracing and JAS model predict the measured value well within 2dB deviaton. The NIRI model, however, underestimates the highway noise level, as the distance between the source and receiver increases.

  • PDF

모서리 검출과 추적을 이용한 차선 감지 및 추적 알고리즘 (Lane Detection and Tracking Algorithm based on Corner Detection and Tracking)

  • 김성도;박지헌;박준상
    • 한국ITS학회 논문지
    • /
    • 제10권3호
    • /
    • pp.64-73
    • /
    • 2011
  • 본 논문에서는 모서리 검출을 이용하여 추출된 모서리를 추적함으로써 차선을 검출하고 추적하는 알고리즘을 제안한다. 제안하는 알고리즘은 양 차선이 연속되지 않고 끊긴 형태로 존재하거나 교차되는 등의 다양한 차선의 형태에도 높은 추출률을 보이는 장점을 가지고 있다. 이는 이러한 형태의 차선의 비율이 높은 시내도로 와 국도에서의 차선 추출에 보다 유리하다. 이러한 점을 증명하기 위해 테스트는 주로 불연속적이고 교차되는 형태의 차선이 많은 도로에서 실시하였고 평균 87% 이상의 추출률을 보여주었다.

레이저 거리 센서만을 이용한 자율 주행 모바일 로봇의 도로 위 정보 획득 (Lane Marking Detection of Mobile Robot with Single Laser Rangefinder)

  • 정병진;박준형;김택영;김덕영;문형필
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.521-525
    • /
    • 2011
  • Lane marking detection is one of important issues in the field of autonomous mobile robot. Especially, in urban environment, like pavement roads of downtown or tour tracks of Science Park, which have continuous patterns on the surface of the road, the lane marking detection becomes more important ability. Although there were many researches about lane detection and lane tracing, many of them used vision sensors mainly to detect lane marking. In this paper, we obtain 2 dimensional library data of 'Intensity' and 'Distance' using one laser rangefinder only. We design a simple classifier and filtering algorithm for the lane detection which uses only one LRF (Laser Range Finder). Allowing extended usage of LRF, this research provides more functionality not only in range finding but also in lane detecting to mobile robots. This work will be technically helpful for robot developers to design more simple and efficient autonomous driving system using LRF.

경사진 도로 환경에서도 강인한 실시간 차선 검출방법 (A Robust Real-Time Lane Detection for Sloping Roads)

  • 허환;한기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권6호
    • /
    • pp.413-422
    • /
    • 2013
  • 본 논문에서는 영상의 카메라 파라미터가 필요 없는 역 투시변환 기술 및 제안한 차선필터를 사용하여 경사진 도로 환경에서도 강인한 실시간 차선 검출방법을 제안한다. 영상의 시작 프레임에서 소실점을 찾은 후, 소실점 주변의 일정영역을 템플릿(TA: Template Area)으로 저장하며, 소실점을 기준으로 하단으로 내려가면서 차선을 예측하고, 예측된 차선을 기반으로 역 투시변환계수를 추출하여 추출된 계수로 원근감이 제거된 영상을 얻으며, 바로 그 영상에 제안한 차선필터를 적용하여 차선을 검출한다. 경사진 도로환경에서도 강인한 차선 검출을 위하여 입력영상으로 부터 TA와 유사한 영역(SA: Similar Area)을 템플릿 매칭으로 추적하여 소실점을 재계산하여 차선을 검출한다. 제안한 방법은 경사진 도로 환경에서도 차선검출이 견고하며, 처리영역을 축소하고 처리과정을 단순화함으로서 초당 40 frames 정도의 양호한 차선검출 결과를 보였다.

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • 대한임베디드공학회논문지
    • /
    • 제3권4호
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF