• Title/Summary/Keyword: lane recovery

Search Result 3, Processing Time 0.01 seconds

Lane Adaptive Recovery for Multiple Lane Faults in Optical Ethernet Link

  • Han, Kyeong-Eun;Kim, Sun-Me;Lee, Jonghyun
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1066-1069
    • /
    • 2014
  • We propose a lane adaptive recovery scheme for multiple lane faults in a multi-lane-based Ethernet link. In our scheme, when lane faults occur in a link, they are processed not as full link faults but as partial link faults. Our scheme provides a higher link utilization and lower packet loss rate by reusing the available lanes of the link and providing a low recovery time of under a microsecond.

East Inverse Perspective Mapping and its Applications to Road State Detection

  • Gang, Yi-Jiang;Eom, Jae-Won;Song, Byung-Suk;Bae, Jae-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.23-26
    • /
    • 2000
  • An improved inverse perspective mapping (IIPM) is proposed so as to reduce computational expense of recovery of 3D road surface. An experimental system based on IIPM is developed to detect lane parameters for a driver assistant system. A re-organized image is obtained quickly and exactly by IIPM. Efficient preprocessing techniques are used to enhance the information of lane and obstacles. Lane in the preprocessed. image is located with region identification. Lane parameters are estimated effectively. An algorithm to adaptively modify the parameters of IIPM is given. Properties of obstacle on 3D road surface are discussed and used to detect obstacles in the current lane and neighboring lanes. Experimental results show that the new method can extract lane state information effectively.

  • PDF

An Analytical Study of the Effect of Inclined Angle of Road on Turn-over Accident of a High-speed Coach running on a Curved Road under Cross-wind Condition (횡풍이 작용하는 속도로의 회전구간에서 도로의 편경사각이 주행차량의 전복사고에 미치는 영향에 관한 분석연구)

  • Park, Hyeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.373-381
    • /
    • 2017
  • Kyeonggi Provincial Government is considering double decker bus service to solve the problem of heavy rush hour traffic. However, the height-to-width ratio is more than 1.16 times larger than that of a general high-speed single decker bus, and the center of gravity is higher. This could cause driving stability problems, such as turnover and breakaway from the lane, especially under strong side-wind conditions at high speed. In this numerical study, the driving characteristics of a model double decker bus were reviewed under side-wind and superelevation conditions at high driving speed. The rolling, pitching, and yawing moment of the model bus were calculated with CFD numerical simulation, and the results were compared to the recovery angular moments of the model bus to evaluate the dynamic stability under given driving conditions. As the model vehicle moves on a straight level road, it is stable under any side-wind conditions. However, on a curved road under side-wind conditions, it could reach unstable conditions dynamically. There is a chance that the bus will turn over when it moves on a curved road with a radius of gyration less than 100 m under side-wind (15 m/s). However, there is a very small chance of breakaway from the lane under any driving conditions.