• Title/Summary/Keyword: lane detect

Search Result 119, Processing Time 0.023 seconds

A Real-time Detection Method for the Driving Direction Points of a Low Speed Processor (저 사양 프로세서를 위한 실시간 주행 방향점 검출 기법)

  • Hong, Yeonggi;Park, Jungkil;Lee, Sungmin;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.950-956
    • /
    • 2014
  • In this paper, the real-time detection method of a DDP (Driving Direction Point) is proposed for an unmanned vehicle to safely follow the center of the road. Since the DDP is defined as a center point between two lanes, the lane is first detected using a web camera. For robust detection of the lane, the binary thresholding and the labeling methods are applied to the color camera image as image preprocessing. From the preprocessed image, the lane is detected, taking the intrinsic characteristics of the lane such as width into consideration. If both lanes are detected, the DDP can be directly obtained from the preprocessed image. However, if one lane is detected, the DDP is obtained from the inverse perspective image to guarantee reliability. To verify the proposed method, several experiments to detect the DDPs are carried out using a 4 wheeled vehicle ERP-42 with a web camera.

Multi-lane Road Recognition Model Applying Computer Vision (컴퓨터비전을 적용한 다차선 도로 인식 모델)

  • Kim, Do-Young;Jang, Jong-Wook;Jang, Sung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.317-319
    • /
    • 2021
  • In Korea, an intelligent transportation system(ITS) is established to efficiently operate traffic congestion on roads and is being used for traffic information collection and speed control systems. Currently, designated and dedicated lanes are in place to ensure traffic circulation and traffic safety, and systematic and accurate illegal vehicle crackdown systems with artificial intelligence technology are needed. In this study, we propose a vehicle number recognition model that can improve the efficiency of the traffic of designated vehicles. By applying computer vision technology, we are going to identify three-lane and four-lane multi-lane roads in real time and detect vehicle numbers by car to suggest ways to crack down on vehicles that violate the designated lane system.

  • PDF

Lane Detection System Development based on Android using Optimized Accumulator Cells (Accumulator cells를 최적화한 안드로이드 기반의 차선 검출 시스템 개발)

  • Tsogtbaatar, Erdenetuya;Jang, Young-Min;Cho, Jae-Hyun;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.126-136
    • /
    • 2014
  • In the Advanced Driver Assistance Systems (ADAS) of smart vehicle and Intelligent Transportation System (ITS) for to detect the boundary of lane is being studied a lot of Hough Transform. This method detects correctly recognition the lane. But recognition rate can fall due to detecting straight lines outside of the lane. In order to solve this problems, this paper proposed an algorithm to recognize the lane boundaries and the accumulator cells in Hough space. Based on proposed algorithm, we develop application for Android was developed by H/W verification. Users of smart phone devices could use lane detection and lane departure warning systems for driver's safety whenever and wherever. Software verification using the OpenCV showed efficiency recognition correct rate of 93.8% and hardware real-time verification for an application development in the Android phone showed recognition correct rate of 70%.

Development of Lane and Vehicle Headway Direction Recognition System for Military Heavy Equipment's Safe Transport - Based on Kalman Filter and Neural Network - (안전한 군용 중장비 수송을 위한 차선 및 차량 진행 방향 인식 시스템 개발 - 칼만 필터와 신경망을 기반으로 -)

  • Choi, Yeong-Yoon;Choi, Kwang-Mo;Moon, Ho-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2007
  • In military transportation, the use of wide trailer for transporting the large and heavy weight equipments such as tank, armoured vehicle, and mobile gunnery is quite common. So, the vulnerability of causing traffic accidents for these wide military trailer to bump or collide with another car in adjacent lane is very high due to its broad width in excess of its own lane's width. Also, the possibility of these strayed accidents can be increased especially by the careless driver. In this paper, the recognition system of lane and vehicle headway direction is developed to detect the possible collision and warn the driver to prevent the fatal accident. In the system development, Kalman filtering is used first to extract the border of driving lane from the video images supplied by the CCD camera attached to the vehicle and the driving lane detection is completed with regression analysis. Next, the vehicle headway direction is recognized by using neural network scheme with the extracted parameters of the detected driving lane feature. The practical experiments for the developed system are also carried out in the real traffic road of Seoul city area and the results show us the more than 90% accuracy in recognizing the driving lane and vehicle headway direction.

Development of Automatic Incident Detection Algorithm Using Image Based Detectors (영상기반의 자동 유고검지 모형 개발)

  • 백용현;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.7-17
    • /
    • 2001
  • The purpose of this paper is to develop automatic incident detection algorithm using image based detector in freeway management system. This algorithm was developed by using neutral network for high speed roadway and by using speed and occupancy variable for low speed roadway. The image detector system with the developed automatic incident detection algorithm can detect multi-lane as well as several detect areas for each lane. To evaluate this system, field tests to measure the detecting rate of incidents were performed with other systems which have APID and DES algorithm at high speed roadway(freeway) and low speed roadway(national arterial). As the results of field test, it found that the detect rate of this system was highest rate comparing to other two systems.

  • PDF

A study on recognition system of preceding vehicle by image processing

  • Shimeno, Yasumasa;Ishijima, Shintaro;Kojima, Aira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.141-144
    • /
    • 1996
  • This study deals with the problem of the recognition of the preceding vehicles by image processing. The purpose of this study is the development of the equipment to prevent a collision with preceding vehicles during driving the vehicle. In order to decrease the processing time and increase reliability, at first, the traffic lane is extracted. It is determined by detecting road edges and calculating their tangent. After the traffic lane is gotten, the position of the vehicle is searched inside the lane. The features used to detect the vehicles in the algorithm are shadow of the vehicle, vertical edges, horizontal edges, and symmetrical segment. The preceding vehicles are extracted successfully by this method.

  • PDF

A Study on the Test Evaluation Method of LKAS Using a Monocular Camera (단안 카메라를 이용한 LKAS 시험평가 방법에 관한 연구)

  • Bae, Geon Hwan;Lee, Seon Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.34-42
    • /
    • 2020
  • ADAS (Advanced Driver Assistance Systems) uses sensors such as camera, radar, lidar and GPS (Global Positioning System). Among these sensors, the camera has many advantages compared with other sensors. The reason is that it is cheap, easy to use and can identify objects. In this paper, therefore, a theoretical formula was proposed to obtain the distance from the vehicle's front wheel to the lane using a monocular camera. And the validity of the theoretical formula was verified through the actual vehicle test. The results of the actual vehicle test in scenario 4 resulted in a maximum error of 0.21 m. The reason is that it is difficult to detect the lane in the curved road, and it is judged that errors occurred due to the occurrence of significant yaw rates. The maximum error occurred in curve road condition, but the error decreased after lane return. Therefore, the proposed theoretical formula makes it possible to assess the safety of the LKA system.

A Study on In-vehicle Aggressive Driving Detection Recorder System for Monitoring on Drivers' Behavior (운전행태 감시를 위한 차량 위험운전 검지장치 연구)

  • Hong, Seung-Jun;Lim, Lyang-Keun;Oh, Ju-Taek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.16-22
    • /
    • 2011
  • This paper presents the potential of in-vehicle data recorder system for monitoring aggressive driving patterns and providing feedback to drivers on their on road behaviour. This system can detect 10 risky types of drivers' driving patterns such as aggressive lane change, sudden brakes and turns with acceleration etc. Vehicle dynamics simulation and vehicle road test have been performed in order to develop driving pattern recognition algorithms. Recorder systems are installed to 50 buses in a single company. Drivers' driving behaviour are monitored for 1 month. The drivers' risky driving data collected by the system are analyzed. Aggressive lane change in 50km/h below is a cause in overwhelming majority of risky driving pattern.

A Study on Edge Detection Algorithm for Road Lane Recognition (차선인식을 위한 에지검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Marn-Go;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.802-804
    • /
    • 2014
  • Edge detection of image for performing the road lane recognition is an essential preprocessing. Various studies are being performed in order to detect such edge and there are conventional edge detection methods such as Sobel, Prewitt and Roberts. Such methods regardless of pixel distribution are processed by applying the same weighted value to the entire pixels and show a somewhat insufficient edge detection results. Therefore, this paper has proposed an algorithm that detects the edge using the suitable weighted value for the road lane recognition considering the pixel distribution shape of the image.

  • PDF

Unmanned Ground Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance (충돌회피 및 차선추적을 위한 무인자동차의 제어 및 모델링)

  • Yu, Hwan-Shin;Kim, Sang-Gyum
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.359-370
    • /
    • 2007
  • Lane tracking and obstacle avoidance are considered two of the key technologies on an unmanned ground vehicle system. In this paper, we propose a method of lane tracking and obstacle avoidance, which can be expressed as vehicle control, modeling, and sensor experiments. First, obstacle avoidance consists of two parts: a longitudinal control system for acceleration and deceleration and a lateral control system for steering control. Each system is used for unmanned ground vehicle control, which notes the vehicle's location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacle and perform obstacle avoidance on the road, which involves vehicle velocity. Second, we explain a method of lane tracking by means of a vision system, which consists of two parts: First, vehicle control is included in the road model through lateral and longitudinal control. Second, the image processing method deals with the lane tracking method, the image processing algorithm, and the filtering method. Finally, in this paper, we propose a method for vehicle control, modeling, lane tracking, and obstacle avoidance, which are confirmed through vehicles tests.

  • PDF