• Title/Summary/Keyword: landsurface denudation

Search Result 1, Processing Time 0.018 seconds

Tectonic Movement in the Korean Peninsula (I): The Spatial Distribution of Tectonic Movement Identified by Terrain Analyses (한반도의 지반운동 ( I ): DEM 분석을 통한 지반운동의 공간적 분포 규명)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.368-387
    • /
    • 2007
  • In order to explain geomorphological characteristics of the Korean Peninsula, it is necessary to understand the spatial distribution of tectonic movements and its causes. Even though geomorphological elements which might have been formed by tectonic movements(e.g. tilted overall landform, erosion surface, river terrace, marine terraces, etc.) have long been considered as main geomorphological research topics in Korea, the knowledge on the spatial distribution of tectonic movement is still limited. This research aims to identify the spatial distributions of tectonic movement via sequential analyses of Digital Elevation Model(DEM). This paper first developed a set of terrain analysis techniques derived from theoretical interrelationships between tectonic uplifts and landsurface denudation processes. The terrain analyses used in this research assume that elevations along major drainage basin divides might preserve original landsurfaces(psuedo-landsuface) that were formed by tectonic movement with relatively little influence by denudation processes. Psuedo-landsurfaces derived from a DEM show clear spatial distribution patterns with distinct directional alignments. Lines connecting psuedo-landsufaces in a certain direction are defined as psuedo-landsurface axes, which are again categorized into two groups: the first is uplift psuedo-landsurface axes that indicate the axis of landmass uplift; and the second is denudational psuedo-landsurface axes that cross step-shaped pusedo-landsurfaces formed via surface denudation. In total, 13 axes of pusedo-landsurface are identified in the Korean Peninsula, which show distinct direction, length, and relative uplift rate. Judging from the distribution of psudo-landsurfaces and their axes, it is concluded that the Korean Peninsula ran be divided into four tectonic regions, which are named as the Northern Tectonic Region, Center Tectonic Region, Southern Tectonic Region, and East Sea Tectonic Region, respectively. The Northern Tectonic Region had experienced a regional uplift centered at the Kaema plateau, and the rate of uplift gradually decreased toward southern, western and eastern directions. The Center Tectonic Region shows an arch-shaped uplift. Its uplift rate is the highest along the East Sea and the rate decreases towards the Yellow sea. The Southern Tectonic Region shows an asymmetric uplift centered a line connecting Dukyu and Jiri Mountains in the middle of the region. The eastern side of the Southern Regions shows higher uplift rate than that of the western side. The East Sea Tectonic Region includes south-eastern coastal area of the peninsula and Gilju-Myeongchun Jigudae, which shows relatively recent tectonic movements in Korea. Since this research visualizes the spatial heterogeneity of long-term tenonic movement in the Korean peninsula, this would provide valuable basic information on long-term and regional differences of geomorphological evolutionary processes and regional geomorphological differences of the Korean Peninsula.