• Title/Summary/Keyword: landslide susceptibility analysis

Search Result 83, Processing Time 0.026 seconds

Landslide Susceptibility Analysis Using Bayesian Network and Semantic Technology (시맨틱 기술과 베이시안 네트워크를 이용한 산사태 취약성 분석)

  • Lee, Sang-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.61-69
    • /
    • 2010
  • The collapse of a slope or cut embankment brings much damage to life and property. Accordingly, it is very important to analyze the spatial distribution by calculating the landslide susceptibility in the estimation of the risk of landslide occurrence. The heuristic, statistic, deterministic, and probabilistic methods have been introduced to make landslide susceptibility maps. In many cases, however, the reliability is low due to insufficient field data, and the qualitative experience and knowledge of experts could not be combined with the quantitative mechanical?analysis model in the existing methods. In this paper, new modeling method for a probabilistic landslide susceptibility analysis combined Bayesian Network with ontology model about experts' knowledge and spatial data was proposed. The ontology model, which was made using the reasoning engine, was automatically converted into the Bayesian Network structure. Through conditional probabilistic reasoning using the created Bayesian Network, landslide susceptibility with uncertainty was analyzed, and the results were described in maps, using GIS. The developed Bayesian Network was then applied to the test-site to verify its effect, and the result corresponded to the landslide traces boundary at 86.5% accuracy. We expect that general users will be able to make a landslide susceptibility analysis over a wide area without experts' help.

Landslide Susceptibility Evaluation in Yanbian Region

  • Liu, Xiuxuan;Quan, Hechun;Moon, Hongduk;Jin, Guangri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.21-27
    • /
    • 2017
  • In order to evaluate landslide susceptibility in Yanbian region, this study analyzed 7 factors related to landslide occurrence, such as soil, geology, land use, slope, slope aspect, fault and river by Analytic Hierarchy Process (AHP), and calculated the weights of these 7 hazard-induced factors, determined the internal weights and the relative weights between various factors. According to these weights, combining the Remote Sensing technology (RS) with Geographic Information System technology (GIS), the selected area was evaluated by using GIS raster data analysis function, then landslide susceptibility chart was mapped out. The comprehensive analysis of AHP and GIS showed that there has unstable area with the potential risk of sliding in the research area. The result of landslide susceptibility agrees well with the historical landslides, which proves the accuracy of adopted methods and hazard-induced factors.

Landslide Susceptibility Analysis of Clicap, Indonesia

  • Kim, I. J.;Lee, S.;Choi, J. W.;Soedradjat, Gatot Moch
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.141-143
    • /
    • 2003
  • The aim of this study is to evaluate the susceptibility of landslides at Clicap area, Indonesia , using a Geographic Information System (GIS). Landslide locations were identified from field surveys. The topographic and geological map were collected and constructed into a spatial database using GIS. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database and lihology and fault was extracted from the geological database. Then landslide susceptibility was analyzed using the landslide-occurrence factors by likelihood methods. The results of the analysis were verified using the landslide location data. The GIS was used to analyze the vast amount of data efficiently . The results can be used to reduce associated hazards, and to plan land use and construction.

  • PDF

Analysis of Susceptibility in Landslide Distribution Areas (산사태 발생지역에서의 민감성 분석에 관한 연구)

  • 양인태;유영걸;천기선;전우현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.381-384
    • /
    • 2004
  • The goal of this study is to generate a landslide susceptibility map using GIS(geographic information system) based method. A simple and efficient algorithm is proposed to generate a landslide susceptibility map from DEM(digital elevation model) and existing maps. The categories of controlling factors for landslides, aspect of slope, soil, topographical index, landuse, vegetation are defined, because those factors are said to have relevance to landslide and are easy to obtain theirs sources. The weight value for landslide susceptibility is calculated from the density of the area of landslide blocks in each class. Finally, a map of susceptibility zones is produced using the weight value of all controlling factors, and then each susceptibility zone is evaluated by comparing with the distribution of each controlling factor class.

  • PDF

A Review of Quantitative Landslide Susceptibility Analysis Methods Using Physically Based Modelling (물리사면모델을 활용한 정량적 산사태 취약성 분석기법 리뷰)

  • Park, Hyuck-Jin;Lee, Jung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • Every year landslides cause serious casualties and property damages around the world. As the accurate prediction of landslides is important to reduce the fatalities and economic losses, various approaches have been developed to predict them. Prediction methods can be divided into landslide susceptibility analysis, landslide hazard analysis and landslide risk analysis according to the type of the conditioning factors, the predicted level of the landslide dangers, and whether the expected consequence cased by landslides were considered. Landslide susceptibility analyses are mainly based on the available landslide data and consequently, they predict the likelihood of landslide occurrence by considering factors that can induce landslides and analyzing the spatial distribution of these factors. Various qualitative and quantitative analysis techniques have been applied to landslide susceptibility analysis. Recently, quantitative susceptibility analyses have predominantly employed the physically based model due to high predictive capacity. This is because the physically based approaches use physical slope model to analyze slope stability regardless of prior landslide occurrence. This approach can also reproduce the physical processes governing landslide occurrence. This review examines physically based landslide susceptibility analysis approaches.

Development of an Evaluation Chart for Landslide Susceptibility using the AHP Analysis Method (AHP 분석기법을 이용한 급경사지재해 취약성 평가표 개발)

  • Chae, Byung-Gon;Cho, Yong-Chan;Song, Young-Suk;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.99-108
    • /
    • 2009
  • Since the preexisting evaluation methods of landslide susceptibility take somehow long time to determine the slope stability based on the field survey and laboratory analysis, there are several problems to acquire immediate evaluation results in the field. In order to overcome the previously mentioned problems and incorrect evaluation results induced by some subjective evaluation criteria and methods, this study tried to develop a method of landslide susceptibility by a quantitative and objective evaluation approach based on the field survey. Therefore, this study developed an evaluation chart for landslide susceptibility on natural terrain using the AHP analysis method to predict landslide hazards on the field sites. The AHP analysis was performed by a questionnaire to several specialists who understands mechanism and influential factors of landslide. Based on the questionnaire, weighting values of criteria and alternatives to influence landslide triggering were determined by the AHP analysis. According to the scoring results of the analysed weighting values, slope angle is the most significant factor. Permeability, water contents, porosity, lithology, and elevation have the significance to the landslide susceptibility in a descending order. Based on the assigned scores of each criterion and alternatives of the criteria, an evaluation chart for landslide susceptibility was suggested. The evaluation chart makes it possible for a geologist to evaluate landslide susceptibility with a total score summed up each alternative score.

Landslide Susceptibility Analysis in Baekdu Mountain Area Using ANN and AHP Method

  • Quan, Hechun;Moon, Hongduk;Jin, Guangri;Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.79-85
    • /
    • 2014
  • To analyze the landslide susceptibility in Baekdu mountain area in china, we get two susceptibility maps using AcrView software through weighted overlay GIS (Geographic Information System) method in this paper. To assess the landslide susceptibility, five factors which affect the landslide occurrence were selected as: slope, aspect, soil type, geological type, and land use. The weight value and rating value of each factor were calculated by the two different methods of AHP (Analytic Hierarchy Process) and ANN (Artificial Neural Network). Then, the weight and rating value was used to obtain the susceptibility maps. Finally, the susceptibility map shows that the very dangerous areas (0.9 or higher) were mainly distributed in the mountainous areas around JiAnShi, LinJiangShi, and HeLongShi near the china-north Korea border and in the mountainous area between the WangQingXian and AnTuXian. From the contrast two susceptibility map, we also Knew that The accuracy of landslide susceptibility map drew by ANN method was better than AHP method.

Development and application of artificial neural network for landslide susceptibility mapping and its verfication at Janghung, Korea

  • Yu, Young-Tae;Lee, Moung-Jin;Won, Joong-Sun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the developed techniques to the study area of janghung in Korea. Landslide locations were identified in the study area from interpretation of satellite image and field survey data, and a spatial database of the topography, soil, forest and land use were consturced. The 13 landslide-related factors were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods, and the susceptibility map was made with a e15 program. For this, the weights of each factor were determinated in 5 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated using the weights and the susceptibility maps were made with a GIS to the 5 cases. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to analyze the landslide susceptibility.

  • PDF

Assessment of Landslide Susceptibility in Jecheon Using Deep Learning Based on Exploratory Data Analysis (데이터 탐색을 활용한 딥러닝 기반 제천 지역 산사태 취약성 분석)

  • Sang-A Ahn;Jung-Hyun Lee;Hyuck-Jin Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.673-687
    • /
    • 2023
  • Exploratory data analysis is the process of observing and understanding data collected from various sources to identify their distributions and correlations through their structures and characterization. This process can be used to identify correlations among conditioning factors and select the most effective factors for analysis. This can help the assessment of landslide susceptibility, because landslides are usually triggered by multiple factors, and the impacts of these factors vary by region. This study compared two stages of exploratory data analysis to examine the impact of the data exploration procedure on the landslide prediction model's performance with respect to factor selection. Deep-learning-based landslide susceptibility analysis used either a combinations of selected factors or all 23 factors. During the data exploration phase, we used a Pearson correlation coefficient heat map and a histogram of random forest feature importance. We then assessed the accuracy of our deep-learning-based analysis of landslide susceptibility using a confusion matrix. Finally, a landslide susceptibility map was generated using the landslide susceptibility index derived from the proposed analysis. The analysis revealed that using all 23 factors resulted in low accuracy (55.90%), but using the 13 factors selected in one step of exploration improved the accuracy to 81.25%. This was further improved to 92.80% using only the nine conditioning factors selected during both steps of the data exploration. Therefore, exploratory data analysis selected the conditioning factors most suitable for landslide susceptibility analysis and thereby improving the performance of the analysis.

Study on the Effect of Training Data Sampling Strategy on the Accuracy of the Landslide Susceptibility Analysis Using Random Forest Method (Random Forest 기법을 이용한 산사태 취약성 평가 시 훈련 데이터 선택이 결과 정확도에 미치는 영향)

  • Kang, Kyoung-Hee;Park, Hyuck-Jin
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • In the machine learning techniques, the sampling strategy of the training data affects a performance of the prediction model such as generalizing ability as well as prediction accuracy. Especially, in landslide susceptibility analysis, the data sampling procedure is the essential step for setting the training data because the number of non-landslide points is much bigger than the number of landslide points. However, the previous researches did not consider the various sampling methods for the training data. That is, the previous studies selected the training data randomly. Therefore, in this study the authors proposed several different sampling methods and assessed the effect of the sampling strategies of the training data in landslide susceptibility analysis. For that, total six different scenarios were set up based on the sampling strategies of landslide points and non-landslide points. Then Random Forest technique was trained on the basis of six different scenarios and the attribute importance for each input variable was evaluated. Subsequently, the landslide susceptibility maps were produced using the input variables and their attribute importances. In the analysis results, the AUC values of the landslide susceptibility maps, obtained from six different sampling strategies, showed high prediction rates, ranges from 70 % to 80 %. It means that the Random Forest technique shows appropriate predictive performance and the attribute importance for the input variables obtained from Random Forest can be used as the weight of landslide conditioning factors in the susceptibility analysis. In addition, the analysis results obtained using specific sampling strategies for training data show higher prediction accuracy than the analysis results using the previous random sampling method.