• Title/Summary/Keyword: landmarks

Search Result 639, Processing Time 0.028 seconds

Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction

  • Omran, Ahmed;Wertheim, David;Smith, Kathryn;Liu, Ching Yiu Jessica;Naini, Farhad B.
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.37.1-37.13
    • /
    • 2020
  • Background: The human mandible is variable in shape, size and position and any deviation from normal can affect the facial appearance and dental occlusion. Objectives: The objectives of this study were to determine whether the Sassouni cephalometric analysis could help predict two-dimensional mandibular shape in humans using cephalometric planes and landmarks. Materials and methods: A retrospective computerised analysis of 100 lateral cephalometric radiographs taken at Kingston Hospital Orthodontic Department was carried out. Results: Results showed that the Euclidean straight-line mean difference between the estimated position of gonion and traced position of gonion was 7.89 mm and the Euclidean straight-line mean difference between the estimated position of pogonion and the traced position of pogonion was 11.15 mm. The length of the anterior cranial base as measured by sella-nasion was positively correlated with the length of the mandibular body gonion-menton, r = 0.381 and regression analysis showed the length of the anterior cranial base sella-nasion could be predictive of the length of the mandibular body gonion-menton by the equation 22.65 + 0.5426x, where x = length of the anterior cranial base (SN). There was a significant association with convex shaped palates and oblique shaped mandibles, p = 0.0004. Conclusions: The method described in this study can be used to help estimate the position of cephalometric points gonion and pogonion and thereby sagittal mandibular length. This method is more accurate in skeletal class I cases and therefore has potential applications in craniofacial anthropology and the 'missing mandible' problem in forensic and archaeological reconstruction.

Skeletal stability after 2-jaw surgery via surgery-first approach in facial asymmetry patients using CBCT

  • Hwang, Dae Seok;Seo, Jeong Seok;Choi, Hong Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.11.1-11.8
    • /
    • 2020
  • Background: The purpose of this study is to compare the skeletal stability of two-jaw surgery via surgery-first approach with conventional two-jaw surgery in facial asymmetry patients by measuring the skeletal changes after surgery from a three-dimensional analysis. From January 2010 to January 2014, 40 patients with facial asymmetry who underwent two-jaw surgery in Pusan National University Hospital were included in this study. They were classified into experimental group (n = 20) who underwent two-jaw surgery via surgery-first approach and control group (n = 20) who underwent conventional two-jaw surgery. After selection of 24 landmarks and the construction of horizontal and sagittal, coronal reference planes, changes in 10 linear measurements and 2 angular measurements were compared between the surgery-first approach and conventional groups in the preoperative, immediate postoperative, and postoperative periods. The paired t test and Student t test were used for statistical analysis. The mean and standard deviation of the measurement were calculated for the experimental and control groups. Results: The statistical analysis showed that changes in skeletal measurements were similar between the surgery-first approach and conventional groups, according to each period. However, U1-SRP measurement showed statistically significant changes in surgery-first approach groups at postsurgical change (T1 to T2). Also, the mean treatment duration in the treatment group was 15.9 ± 5.48 months whereas that in the control group was 32.9 ± 14.05 months. Conclusion: In facial asymmetry patients, similar results were observed in the postoperative skeletal stability when 2-jaw surgery via surgery-first approach was compared with conventional 2-jaw surgery. However, significant lateral deviation of upper incisor midline was observed. In addition, a shorter average treatment duration was observed. To stabilize the unstable occlusion after surgery, increased wearing of the stent and proactive rubber guidance will be needed.

Changes in the hyoid bone, tongue, and oropharyngeal airway space after mandibular setback surgery evaluated by cone-beam computed tomography

  • Kim, Seon-Hye;Choi, Sung-Kwon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.27.1-27.9
    • /
    • 2020
  • Background: Mandibular setback surgery can change the position of the mandible which improves occlusion and facial profile. Surgical movement of the mandible affects the base of the tongue, hyoid bone, and associated tissues, resulting in changes in the pharyngeal airway space. The aim of this study was to analyze the 3-dimensional (3D) changes in the hyoid bone and tongue positions and oropharyngeal airway space after mandibular setback surgery. Methods: A total of 30 pairs of cone-beam computed tomography (CBCT) images taken before and 1 month after surgery were analyzed by measuring changes in the hyoid bone and tongue positions and oropharyngeal airway space. The CBCT images were reoriented using InVivo 5.3 software (Anatomage, San Jose, USA) and landmarks were assigned to establish coordinates in a three-dimensional plane. The mean age of the patients was 21.7 years and the mean amount of mandibular setback was 5.94 mm measured from the B-point. Results: The hyoid bone showed significant posterior and inferior displacement (P < 0.001, P < 0.001, respectively). Significant superior and posterior movements of the tongue were observed (P < 0.05, P < 0.05, respectively). Regarding the velopharyngeal and glossopharyngeal spaces, there were significant reductions in the volume and minimal cross-sectional area (P < 0.001). The anteroposterior and transverse widths of the minimal cross-sectional area were decreased (P < 0.001, P < 0.001, respectively). In addition, the amount of mandibular setback positively correlated with the amount of posterior and inferior movement of the hyoid bone (P < 0.05, P < 0.05, respectively). Conclusion: There were significant changes in the hyoid bone, tongue, and airway space after mandibular setback surgery.

Geodetic monitoring on onshore wind towers: Analysis of vertical and horizontal movements and tower tilt

  • Canto, Luiz Filipe C.;de Seixas, Andrea
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.309-328
    • /
    • 2021
  • The objective of this work was to develop a methodology for geodetic monitoring on onshore wind towers, to ascertain the existence of displacements from object points located in the tower and at the foundation's base. The geodesic auscultation was carried out in the Gravatá 01 and 02 wind towers of the Eólica Gravatá wind farm, located in the Brazilian municipality of Gravatá-PE, using a stable Measurement Reference System. To verify the existence of displacements, pins were implanted, with semi-spherical surfaces, at the bases of the towers being monitored, measured by means of high-precision geometric leveling and around the Gravatá 02 tower, concrete landmarks, iron rods and reflective sheets were implanted, observed using geodetic/topographic methods: GNSS survey, transverse with forced centering, three-dimensional irradiation, edge measurement method and trigonometric leveling of unilateral views. It was found that in the Gravatá 02 tower the average rays of the circular sections of the transverse welds (ST) were 1.8431 m ± 0.0005 m (ST01) and 1.6994 m ± 0.0268 m of ST22, where, 01 and 22 represent the serial number of the transverse welds along the tower. The average calculation of the deflection between the coordinates of the center of the circular section of the ST22 and the vertical reference alignment of the ST1 was 0°2'39.22" ± 2.83" in the Northwest direction and an average linear difference of 0.0878 m ± 0.0078 m. The top deflection angle was 0°8'44.88" and a linear difference of ± 0.2590 m, defined from a non-linear function adjusted by Least Squares Method (LSM).

Deep Learning-based Gaze Direction Vector Estimation Network Integrated with Eye Landmark Localization (딥 러닝 기반의 눈 랜드마크 위치 검출이 통합된 시선 방향 벡터 추정 네트워크)

  • Joo, Heeyoung;Ko, Min-Soo;Song, Hyok
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.748-757
    • /
    • 2021
  • In this paper, we propose a gaze estimation network in which eye landmark position detection and gaze direction vector estimation are integrated into one deep learning network. The proposed network uses the Stacked Hourglass Network as a backbone structure and is largely composed of three parts: a landmark detector, a feature map extractor, and a gaze direction estimator. The landmark detector estimates the coordinates of 50 eye landmarks, and the feature map extractor generates a feature map of the eye image for estimating the gaze direction. And the gaze direction estimator estimates the final gaze direction vector by combining each output result. The proposed network was trained using virtual synthetic eye images and landmark coordinate data generated through the UnityEyes dataset, and the MPIIGaze dataset consisting of real human eye images was used for performance evaluation. Through the experiment, the gaze estimation error showed a performance of 3.9, and the estimation speed of the network was 42 FPS (Frames per second).

Comparison of dimensional accuracy between direct-printed and thermoformed aligners

  • Koenig, Nickolas;Choi, Jin-Young;McCray, Julie;Hayes, Andrew;Schneider, Patricia;Kim, Ki Beom
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.249-257
    • /
    • 2022
  • Objective: The purpose of this study was to evaluate and compare the dimensional accuracy between thermoformed and direct-printed aligners. Methods: Three types of aligners were manufactured from the same reference standard tessellation language (STL) file: thermoformed aligners were manufactured using Zendura FLXTM (n = 12) and Essix ACETM (n = 12), and direct-printed aligners were printed using Tera HarzTM TC-85DAP 3D Printer UV Resin (n = 12). The teeth were not manipulated with any tooth-moving software in this study. The samples were sprayed with an opaque scanning spray, scanned, imported to Geomagic® Control XTM metrology software, and superimposed on the reference STL file by using the best-fit alignment algorithm. Distances between the aligner meshes and the reference STL file were measured at nine anatomical landmarks. Results: Mean absolute discrepancies in the Zendura FLXTM aligners ranged from 0.076 ± 0.057 mm to 0.260 ± 0.089 mm and those in the Essix ACETM aligners ranged from 0.188 ± 0.271 mm to 0.457 ± 0.350 mm, while in the direct-printed aligners, they ranged from 0.079 ± 0.054 mm to 0.224 ± 0.041 mm. Root mean square values, representing the overall trueness, ranged from 0.209 ± 0.094 mm for Essix ACETM, 0.188 ± 0.074 mm for Zendura FLXTM, and 0.140 ± 0.020 mm for the direct-printed aligners. Conclusions: This study showed greater trueness and precision of direct-printed aligners than thermoformed aligners.

The Association between Facial Morphology and Cold Pattern

  • Ahn, Ilkoo;Bae, Kwang-Ho;Jin, Hee-Jeong;Lee, Siwoo
    • The Journal of Korean Medicine
    • /
    • v.42 no.4
    • /
    • pp.102-119
    • /
    • 2021
  • Objectives: Facial diagnosis is an important part of clinical diagnosis in traditional East Asian Medicine. In this paper, using a fully automated facial shape analysis system, we show that facial morphological features are associated with cold pattern. Methods: The facial morphological features calculated from 68 facial landmarks included the angles, areas, and distances between the landmark points of each part of the face. Cold pattern severity was determined using a questionnaire and the cold pattern scores (CPS) were used for analysis. The association between facial features and CPS was calculated using Pearson's correlation coefficient and partial correlation coefficients. Results: The upper chin width and the lower chin width were negatively associated with CPS. The distance from the center point to the middle jaw and the distance from the center point to the lower jaw were negatively associated with CPS. The angle of the face outline near the ear and the angle of the chin line were positively associated with CPS. The area of the upper part of the face and the area of the face except the sensory organs were negatively associated with CPS. The number of facial morphological features that exhibited a statistically significant correlation with CPS was 37 (unadjusted). Conclusions: In this study of a Korean population, subjects with a high CPS had a more pointed chin, longer face, more angular jaw, higher eyes, and more upward corners of the mouth, and their facial sensory organs were relatively widespread.

Turbulent-image Restoration Based on a Compound Multibranch Feature Fusion Network

  • Banglian Xu;Yao Fang;Leihong Zhang;Dawei Zhang;Lulu Zheng
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.237-247
    • /
    • 2023
  • In middle- and long-distance imaging systems, due to the atmospheric turbulence caused by temperature, wind speed, humidity, and so on, light waves propagating in the air are distorted, resulting in image-quality degradation such as geometric deformation and fuzziness. In remote sensing, astronomical observation, and traffic monitoring, image information loss due to degradation causes huge losses, so effective restoration of degraded images is very important. To restore images degraded by atmospheric turbulence, an image-restoration method based on improved compound multibranch feature fusion (CMFNetPro) was proposed. Based on the CMFNet network, an efficient channel-attention mechanism was used to replace the channel-attention mechanism to improve image quality and network efficiency. In the experiment, two-dimensional random distortion vector fields were used to construct two turbulent datasets with different degrees of distortion, based on the Google Landmarks Dataset v2 dataset. The experimental results showed that compared to the CMFNet, DeblurGAN-v2, and MIMO-UNet models, the proposed CMFNetPro network achieves better performance in both quality and training cost of turbulent-image restoration. In the mixed training, CMFNetPro was 1.2391 dB (weak turbulence), 0.8602 dB (strong turbulence) respectively higher in terms of peak signal-to-noise ratio and 0.0015 (weak turbulence), 0.0136 (strong turbulence) respectively higher in terms of structure similarity compared to CMFNet. CMFNetPro was 14.4 hours faster compared to the CMFNet. This provides a feasible scheme for turbulent-image restoration based on deep learning.

Three-Dimensional Evaluation of Skeletal Stability following Surgery-First Orthognathic Approach: Validation of a Simple and Effective Method

  • Nabil M. Mansour;Mohamed E. Abdelshaheed;Ahmed H. El-Sabbagh;Ahmed M. Bahaa El-Din;Young Chul Kim;Jong-Woo Choi
    • Archives of Plastic Surgery
    • /
    • v.50 no.3
    • /
    • pp.254-263
    • /
    • 2023
  • Background The three-dimensional (3D) evaluation of skeletal stability after orthognathic surgery is a time-consuming and complex procedure. The complexity increases further when evaluating the surgery-first orthognathic approach (SFOA). Herein, we propose and validate a simple time-saving method of 3D analysis using a single software, demonstrating high accuracy and repeatability. Methods This retrospective cohort study included 12 patients with skeletal class 3 malocclusion who underwent bimaxillary surgery without any presurgical orthodontics. Computed tomography (CT)/cone-beam CT images of each patient were obtained at three different time points (preoperation [T0], immediately postoperation [T1], and 1 year after surgery [T2]) and reconstructed into 3D images. After automatic surface-based alignment of the three models based on the anterior cranial base, five easily located anatomical landmarks were defined to each model. A set of angular and linear measurements were automatically calculated and used to define the amount of movement (T1-T0) and the amount of relapse (T2-T1). To evaluate the reproducibility, two independent observers processed all the cases, One of them repeated the steps after 2 weeks to assess intraobserver variability. Intraclass correlation coefficients (ICCs) were calculated at a 95% confidence interval. Time required for evaluating each case was recorded. Results Both the intra- and interobserver variability showed high ICC values (more than 0.95) with low measurement variations (mean linear variations: 0.18 mm; mean angular variations: 0.25 degree). Time needed for the evaluation process ranged from 3 to 5 minutes. Conclusion This approach is time-saving, semiautomatic, and easy to learn and can be used to effectively evaluate stability after SFOA.

Classification of Torso Shapes of Men Aged 40-64 - Based on Measurements Extracted from the 8th Size Korea Scans - (40-64세 남성의 토르소 형태 분류에 관한 연구 - 제8차 Size Korea 인체형상으로부터 추출한 측정값을 이용하여 -)

  • Guo Tingyu;Eun Joo Ryu;Hwa Kyung Song
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.92-103
    • /
    • 2023
  • As the body shape change which occurs after middle age is the main factor affecting the fit of ready-to-wear clothes, this study was designed to classify and analyze the torso shapes of middle-aged men. This study sorted 3D body scans of 200 men aged 40-64 from the 8th Size Korea (2021) database and extracted their 47 measurement values using the Grasshopper algorithm for automatic extraction landmarks and measurements, developed by the previous research (Ryu & Song, 2022). Eight principal components (torso length, shoulder size, overall body size, abdomen prominence, back protrusion, neck inclination, upper body slope, and hip prominence) were identified and four torso shapes were classified. Shape 1 (28.5%) exhibited the shortest torso length, the narrowest shoulders, and the most protruding back. Shape 2 (21.0%) exhibited the skinniest body and the largest backward inclination of the upper body. Hence, the back appeared to be protruding, and the abdomen looked prominent. Shape 3 (25.5%) had the largest overall body size. Thus, the abdomen looked the least protruding, and it exhibited the flattest back. Shape 4 (25.0%) had the longest torso, widest shoulders, straightest neck, and the least protruding hips. This study suggested these three discriminant functions to identify a new person's torso type.