• Title/Summary/Keyword: landmark estimation

Search Result 47, Processing Time 0.024 seconds

Deep Learning-based Gaze Direction Vector Estimation Network Integrated with Eye Landmark Localization (딥 러닝 기반의 눈 랜드마크 위치 검출이 통합된 시선 방향 벡터 추정 네트워크)

  • Joo, Heeyoung;Ko, Min-Soo;Song, Hyok
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.748-757
    • /
    • 2021
  • In this paper, we propose a gaze estimation network in which eye landmark position detection and gaze direction vector estimation are integrated into one deep learning network. The proposed network uses the Stacked Hourglass Network as a backbone structure and is largely composed of three parts: a landmark detector, a feature map extractor, and a gaze direction estimator. The landmark detector estimates the coordinates of 50 eye landmarks, and the feature map extractor generates a feature map of the eye image for estimating the gaze direction. And the gaze direction estimator estimates the final gaze direction vector by combining each output result. The proposed network was trained using virtual synthetic eye images and landmark coordinate data generated through the UnityEyes dataset, and the MPIIGaze dataset consisting of real human eye images was used for performance evaluation. Through the experiment, the gaze estimation error showed a performance of 3.9, and the estimation speed of the network was 42 FPS (Frames per second).

Automated Mismatch Detection based on Matching and Robust Estimation for Automated Image Navigation

  • Lee Tae-Yoon;Kim Taejung;Choi Rae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.709-712
    • /
    • 2005
  • Ground processing for geostationary weather satellite such as GOES, MTSAT includes the process called image navigation. Image navigation means the retrieval of satellite navigational parameters from images and requires landmark detection by matching satellite images against landmark chips. For an automated preprocessing, a matching must be performed automatically. However, if match results contain errors, the accuracy of image navigation deteriorates. To overcome this problem, we propose the use of a robust estimation technique, called Random Sample Consensus (RANSAC), to automatically detect mismatches. We tested GOES-9 satellite images with 30 landmark chips. Landmark chips were extracted from the world shoreline database. To them, matching was applied and mismatch results were detected automatically by RANSAC. Results showed that all mismatches were detected correctly by RANSAC with a threshold value of 2.5 pixels.

  • PDF

Localization of Mobile Robot Using Color Landmark mounted on Ceiling (천장 부착 컬러 표식을 이용한 이동로봇의 자기위치추정)

  • Oh, Jong-Kyu;Lee, Chan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.91-94
    • /
    • 2001
  • In this paper, we proposed localization method of mobile robot using color landmark mounted on ceiling. This work is composed 2 parts : landmark recognition part which finds the position of multiple landmarks in image and identifies them and absolute position estimation part which estimates the location and orientation of mobile robot in indoor environment. In landmark recognition part, mobile robot detects artificial color landmarks using simple histogram intersection method in rg color space which is insensitive to the change of illumination. Then absolute position estimation part calculates relative position of the mobile robot to the detected landmarks. For the verification of proposed algorithm, ceiling-orientated camera was installed on a mobile robot and performance of localization was examined by designed artificial color landmarks. As the result of test, mobile robot could achieve the reliable landmark detection and accurately estimate the position of mobile robot in indoor environment.

  • PDF

Edge Line Information based Underwater Landmark for UUV

  • Yu, Son-Cheol;Kang, Dong-Joung;Kim, Jae-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.68-75
    • /
    • 2011
  • This paper addresses an underwater landmark for updating UUV positioning information. A method is proposed in which the landmark's cubic shape and edge are recognized. The reliability, installation load, and management of landmark design were taken into consideration in order to assess practical applications of the landmark. Landmark recognition was based on topological features. The straight line recognition confirmed the landmark's location and enabled an UUV to accurately estimated its underwater position with respect to the landmark. An efficient recognition method is proposed, which provides real-time processing with limited UUV computing power. An underwater experiment was conducted in order to evaluate the proposed method's reliability and accuracy.

Mobile Robot Path Finding Using Invariant Landmarks

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.3
    • /
    • pp.178-184
    • /
    • 2016
  • This paper proposes a new path-finding scheme using viewpoint-invariant landmarks. The scheme introduces the concept of landmark detection in images captured with a vision sensor attached to a mobile robot, and provides landmark clues to determine a path. Experiment results show that the scheme efficiently detects landmarks with changes in scenes due to the robot's movement. The scheme accurately detects landmarks and reduces the overall landmark computation cost. The robot moves in the room to capture different images. It can efficiently detect landmarks in the room from different viewpoints of each scene. The outcome of the proposed scheme results in accurate and obstacle-free path estimation.

Landmark Matching Tests : Sensitivity to Cloud Detection Performance (구름 검출 성능에 따른 Landmark 정합 정밀도 분석)

  • Kang, Chi-Ho;Ahn, Sang-Il
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.219-228
    • /
    • 2007
  • The test is performed to measure the accuracy of landmark matching process considering cloud detection performance and to analyze the evolution of this accuracy with respect to the cloud detection processing parameters. For the purpose, MTSAT-1R HiRiD data were used to induce final results. The test result shows that landmarks matching performance estimation on MTSAT-1R HiRiD data is considered as being between 0.06 and 0.09 IR pixel, corresponding to $7{\mu}rad$ and $10{\mu}rad$.

  • PDF

Development of a sonar map based position estimation system for an autonomous mobile robot operating in an unknown environment (미지의 영역에서 활동하는 자율이동로봇의 초음파지도에 근거한 위치인식 시스템 개발)

  • 강승균;임종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1589-1592
    • /
    • 1997
  • Among the prerequisite abilities (perception of environment, path planning and position estimation) of an autonomous mobile robot, position estimation has been seldom studied by mobile robot researchers. In most cases, conventional positioin estimation has been performed by placing landmarks or giving the entrire environmental information in advance. Unlikely to the conventional ones, the study addresses a new method that the robot itself can select distinctive features in the environment and save them as landmarks without any a priori knowledge, which can maximize the autonomous behavior of the robot. First, an orjentaion probaility model is applied to construct a lcoal map of robot's surrounding. The feature of the object in the map is then extracted and the map is saved as landmark. Also, presented is the position estimation method that utilizes the correspondence between landmarks and current local map. In dong this, the uncertainty of the robot's current positioin is estimated in order to select the corresponding landmark stored in the previous steps. The usefulness of all these approaches are illustrated with the results porduced by a real robot equipped with ultrasonic sensors.

  • PDF

Mobile Robot Localization using Ceiling Landmark Positions and Edge Pixel Movement Vectors (천정부착 랜드마크 위치와 에지 화소의 이동벡터 정보에 의한 이동로봇 위치 인식)

  • Chen, Hong-Xin;Adhikari, Shyam Prasad;Kim, Sung-Woo;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.368-373
    • /
    • 2010
  • A new indoor mobile robot localization method is presented. Robot recognizes well designed single color landmarks on the ceiling by vision system, as reference to compute its precise position. The proposed likelihood prediction based method enables the robot to estimate its position based only on the orientation of landmark.The use of single color landmarks helps to reduce the complexity of the landmark structure and makes it easily detectable. Edge based optical flow is further used to compensate for some landmark recognition error. This technique is applicable for navigation in an unlimited sized indoor space. Prediction scheme and localization algorithm are proposed, and edge based optical flow and data fusing are presented. Experimental results show that the proposed method provides accurate estimation of the robot position with a localization error within a range of 5 cm and directional error less than 4 degrees.

Multi-Finger 3D Landmark Detection using Bi-Directional Hierarchical Regression

  • Choi, Jaesung;Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.9-11
    • /
    • 2016
  • Purpose In this paper we proposed bi-directional hierarchical regression for accurate human finger landmark detection with only using depth information.Materials and Methods Our algorithm consisted of two different step, initialization and landmark estimation. To detect initial landmark, we used difference of random pixel pair as the feature descriptor. After initialization, 16 landmarks were estimated using cascaded regression methods. To improve accuracy and stability, we proposed bi-directional hierarchical structure.Results In our experiments, the ICVL database were used for evaluation. According to our experimental results, accuracy and stability increased when applying bi-directional hierarchical regression more than typical method on the test set. Especially, errors of each finger tips of hierarchical case significantly decreased more than other methods.Conclusion Our results proved that our proposed method improved accuracy and stability and also could be applied to a large range of applications such as augmented reality and simulation surgery.