• 제목/요약/키워드: landing performance

검색결과 236건 처리시간 0.021초

Design of Multisensor Navigation System for Autonomous Precision Approach and Landing

  • Soon, Ben K.H.;Scheding, Steve;Lee, Hyung-Keun;Lee, Hung-Kyu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.377-382
    • /
    • 2006
  • Precision approach and landing of aircraft in a remote landing zone autonomously present several challenges. Firstly, the exact location, orientation and elevation of the landing zone are not always known; secondly, the accuracy of the navigation solution is not always sufficient for this type of precision maneuver if there is no DGPS availability within close proximity. This paper explores an alternative approach for estimating the navigation parameters of the aircraft to the landing area using only time-differenced GPS carrier phase measurement and range measurements from a vision system. Distinct ground landmarks are marked before the landing zone. The positions of these landmarks are extracted from the vision system then the ranges relative to these locations are used as measurements for the extended Kalman filter (EKF) in addition to the precise time-differenced GPS carrier phase measurements. The performance of this navigation algorithm is demonstrated using simulation.

  • PDF

경항공모함 이·착함 성능평가 및 안전임무 수행범주 일관 해석 연구 (A Study on Short-Take-Off and Vertical Landing (STOVL) Performance Evaluation of a Light Aircraft Carrier and a Consistent Analysis of Safe Operating Envelope (SOE))

  • 홍사영;박동민;정재환;서민국;조석규
    • 대한조선학회논문집
    • /
    • 제61권2호
    • /
    • pp.125-134
    • /
    • 2024
  • The Safe Operating Envelope (SOE) combined with Short-Take-Off and Vertical Landing (STOVL) performance is an essential consideration of a light aircraft carrier for design of hull shape with excellent seakeeping performance in terms of naval air operations as well as traditional naval ship missions such as Transit and Patrol (TAP), and Replenishment at Sea (RAS) and so on. A variety of procedures are systematically combined to determine SOE considering rather complicated missions associated with operation of aircraft onboard. The evaluation of take-off and landing safety missions onboard should consider wind effect on deck and severer seakeeping indices and standards compared with conventional naval ships. In order to support take-off and landing missions, various support activities of the crews are required. So, additional evaluation is needed for indicators such as MSI(Motion sickness Index) and MII(Motion Induced Interruptions), which are quantitative indicators of work ability that appear as a result of motion response. In this study, a standard procedure is developed including the seaworthiness performance indicators, standards, and evaluation procedures that should be considered during design of STOVL aircraft carrier. Analysis results are discussed in terns of air-wake on deck as well as seakeeping indices associated with design parameter changes in view of conceptual design of a light aircraft carrier.

착륙 실험에 의한 이중차분 위치영역 Hatch 필터의 성능 분석 (Performance Evaluation of Double-Differencing Position-Domain Hatch Filter By a Landing Experiment)

  • 김희성;주정민;이형근
    • 한국항공운항학회지
    • /
    • 제18권1호
    • /
    • pp.19-26
    • /
    • 2010
  • To expand the application area of global navigation satellite systems, precision landing is one of the most critical area to be solved. For the development and validation of the precision landing system, many aspects need to be analyzed including the system architecture, signal characteristics, atmospheric delay, communication delay, accuracy, integrity, and availability. Among them, the signal characteristics analysis requires the processing of measurements collected by real-flight experiments. This paper presents the processing results of the real measurements collected by a flight and landing experiment. To process and analyze the data, double differencing position-domain hatch filter is utilized. Accuracy of the proposed filter is evaluated utilizing reference trajectory generated by commercial software. Finally, by comparing with conventional range domain characteristics of position domain filter is analyzed.

이산 슬라이딩 모드 제어를 이용한 소천체 자율 착륙 기법 (Autonomous Landing on Small Bodies based on Discrete Sliding Mode Control)

  • 이주영
    • 한국항공우주학회지
    • /
    • 제45권8호
    • /
    • pp.647-661
    • /
    • 2017
  • 본 논문에서는 탐사선을 소천체에 착륙시키기 위한 자율 착륙 기법을 제시하였다. 제시된 기법은 탐사선이 스스로 착륙을 위한 위치 및 자세 프로파일을 생성하고 이를 추종하는 구조를 가지며, 위치 및 자세 추종을 위한 제어기를 설계함에 있어 소천체 및 탐사선의 환경 불확실성에 대해 강인한 특성을 갖는 이산 슬라이딩 모드 제어법칙을 바탕으로 하였다. 착륙을 위한 자율 항법 기법으로는 시각기반 관성항법을 적용하였으며, 제시된 착륙 기법은 다양한 불확실성이 존재하는 상황에서의 수치 시뮬레이션을 통해 검증되었다.

Legged Robot Landing Control using Body Stiffness & Damping

  • Sung, Sang-Hak;Youm, Youn-Gil;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1928-1933
    • /
    • 2005
  • This Paper is about landing control of legged robot. Body stiffness and damping is used as landing strategy of a legged robot. First, we only used stiffness control method to control legged robot landing. Second control method,sliding mode controller and feedback linearization controller is applied to enhance position control performance. Through these control algorithm, body center of gravity behaves like mass with spring & damping in vertical direction on contact regime.

  • PDF

착륙장치 2 자유도 동적 모델링 및 최적설계 (Landing Gear 2 Degree of Freedom Modeling and Optimization)

  • 이승규;신정우;김태욱
    • 한국항공운항학회지
    • /
    • 제23권1호
    • /
    • pp.56-61
    • /
    • 2015
  • Because of kinematic complexities, nonlinear behavior, etc, the performance of oleo-pneumatic landing gear is predicted by qualified commercial softwares. While commercial softwares predict more exactly, it takes a long time to construct or modify a model. At initial design stage, design parameters can be determined quickly and exactly enough with simple 2 degree of freedom model of mass, spring and damping. 2 degree of freedom model can be easily applied to optimization and reliability analysis which takes repetitive computation. In this paper, oleo-pneumatic landing gear is modeled as a nonlinear 2 degree of freedom model. The analysis are compared with landing gear drop test. To determine design parameter, optimization problem is solved with genetic algorithm and 2 degree of freedom model.

Constrained Adaptive Backstepping Controller Design for Aircraft Landing in Wind Disturbance and Actuator Stuck

  • Yoon, Seung-Ho;Kim, You-Dan;Park, Sang-Hyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권1호
    • /
    • pp.74-89
    • /
    • 2012
  • An adaptive backstepping controller is designed for the automatic landing of a fixed-wing aircraft. The backstepping control scheme is adopted by using the nonlinear six degree-of-freedom dynamics of the aircraft during the landing phase. The adaptive law is integrated along with the backstepping controller in order to estimate the aircraft modeling errors as well as the external disturbance. The dynamic constraints of the states and the actuator inputs are taken into account in the parameter adaptation. This is done to prevent an aggressive adaptation and to provide reliable control commands. Numerical simulations were performed to verify the performance of the proposed control law for the landing of the aircraft with the presence of gust and actuator stuck.

Real-time collision-free landing path planning for drone deliveries in urban environments

  • Hanseob Lee;Sungwook Cho;Hoon Jung
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.746-757
    • /
    • 2023
  • This study presents a novel safe landing algorithm for urban drone deliveries. The rapid advancement of drone technology has given rise to various delivery services for everyday necessities and emergency relief efforts. However, the reliability of drone delivery technology is still insufficient for application in urban environments. The proposed approach uses the "landing angle control" method to allow the drone to land vertically and a rapidly exploring random tree-based collision avoidance algorithm to generate safe and efficient vertical landing paths for drones while avoiding common urban obstacles like trees, street lights, utility poles, and wires; these methods allow for precise and reliable urban drone delivery. We verified the approach within a Gazebo simulation operated through ROS using a six-degree-of-freedom drone model and sensors with similar specifications to actual models. The performance of the algorithms was tested in various scenarios by comparing it with that of stateof-the-art 3D path planning algorithms.

공기부양상륙정의 개념설계를 위한 전투중량 대안분석 연구 (A Study on the Trade-off Analysis of Combat Weight for Conceptual design of a Landing Craft Air Cushion)

  • 이제동;신용석
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.66-75
    • /
    • 2000
  • The purpose of this study is to develop and illustrate methods of applying trade-off techniques to landing craft air cushion design evaluation. The problem areas of concern are the application of quantitative analytical methods to conceptual design. The interrelationships between composite system measures and selected performance requirements(speed, cruising range, cargo etc.) are analyzed and the expressions for gross weight are developed as functions of performance parameters. Trade-offs of performance parameters in terms of weight are then calculated. The application of these results to evaluation of Require Operational Capabilities are illustrated.

  • PDF

무인항공기의 자동 착륙을 위한 LSM 및 CPA를 활용한 영상 기반 장애물 상태 추정 및 충돌 예측 (Vision-based Obstacle State Estimation and Collision Prediction using LSM and CPA for UAV Autonomous Landing)

  • 이성봉;박천만;김혜지;이동진
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.485-492
    • /
    • 2021
  • 무인항공기의 영상 기반 자동 정밀 착륙 기술은 착륙 지점에 대한 정밀한 위치 추정 기술과 착륙 유도 기술이 요구된다. 또한, 안전한 착륙을 위하여 지상 장애물에 대한 착륙 지점의 안전성을 판단하고, 안전성이 확보된 경우에만 착륙을 유도하도록 설계되어야 한다. 본 논문은 자동 정밀 착륙을 수행하기 위하여 영상 기반의 항법과 착륙 지점의 안전성을 판단하기 위한 알고리즘을 제안한다. 영상 기반 항법을 수행하기 위해 CNN 기법을 활용하여 착륙 패드를 탐지하고, 탐지 정보를 활용하여 통합 항법 해를 도출한다. 또한, 위치 추정 성능을 향상시키기 위한 칼만필터를 설계 및 적용한다. 착륙 지점의 안전성을 판단하기 위하여 동일한 방식으로 장애물 탐지 및 위치 추정을 수행하고, LSM을 활용하여 장애물의 속도를 추정한다. 추정한 장애물의 상태를 활용하여 계산한 CPA를 기반으로 장애물과의 충돌 여부를 판단한다. 최종적으로 본 논문에서 제안된 알고리즘을 비행 실험을 통해 검증한다.