• Title/Summary/Keyword: landing impact

Search Result 120, Processing Time 0.025 seconds

Impact Analysis of Oleo-pneumatic Nose Strut for Light Aircraft (소형항공기 올레오 타입 전방착륙장치 충격해석)

  • Park, Ill-Kyung;Choi, Sun-Woo;Jang, Jae-Won
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, a nonlinear 2 degree of freedom mathematical model has been developed for impact analysis of the nose landing gear of a light aircraft which is composed of an wheel & tire, an Oleo-pneumatic shock strut and the castering wheel fork for the differential braking steering, and then the response of impact is computed using a numerical method. The mathematical model of a nose landing gear contains nonlinear characteristics which are an impact load - deflection property of a tire and internally frictional forces between an inner surface of an upper cylinder and a bearing of a lower rod due to side forces like the declined angle of strut, the moment due to an wheel fork, the side drag due to a steering and it is computed using the 4th-order Runge-Kutta method. The comparison process between analytical results and experimental results of the other proven nose landing gear is carried out to verify the mathematical model.

  • PDF

Stress Analysis of Plate-Spring-Type Landing Gear Materials (판스프링형 랜딩기어의 재질에 따른 응력 해석)

  • Kim, Kyeong-Hwan;Lee, Young-Shin;Han, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.303-308
    • /
    • 2014
  • Aircraft are an indispensable mode of modern transportation. They are also used as in a wide variety of other fields. For example, aircraft are used for accommodating passengers, carrying freight, and for military reconnaissance. Aircraft ground operations include landing and taking off. During landing, a higher load is applied to the landing gear than during takeoff. The landing gear should absorb impact energy and prevent damage to the main body of the aircraft in the case of an accident. In this study, simulations were performed for two types of plate-spring-type landing gear: that made of composite materials and that constructed with aluminum. The structural safety of landing gear made of each material was also evaluated.

Experimental Approach to Hopping Pattern Generation for One-legged Robot (한다리 로봇의 뜀뛰기 패턴 생성에 관한 실험적 접근)

  • Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.837-844
    • /
    • 2012
  • We introduce a pattern generation method for a hopping one-legged robot and verify it experimentally. The pattern is derived from the liner and angular momentum of a COM (Center of Mass), which are pre-scheduled. Because of the relation between angular velocities of joints and momemtums of the COM, joint angle trajectories are easily obtained. In addition, the landing impact force is reduced by only adjusting the landing timing. In the experiment, the one-legged robot hops in place with 0.06 s of flying time, and makes continuous hopping. Based on our experimental results, the proposed method can be applied to hopping and running of biped humanoid robots.

Response analysis of 6DOF fuselage model during taxiing for comparison of characteristics of single/double stage oleo-pneumatic shock absorber at nose (단-복동형 유.공압 완충장치의 전방장착특성 비교를 위한 6자유도 기체 모형의 지상 이동 응답해석)

  • Lee, Kook-Hee;Lee, Yoon-Kyu;Kim, Kwang-Joon;Lee, Sang-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.734-735
    • /
    • 2008
  • Shock absorber for rotorcraft landing gear should absorb landing impact during landing and isolate vibration to fuselage during taxiing. Double stage oleo-pneumatic shock absorber is known to have better performances than single stage oleo-pneumatic shock absorber. This paper deals with the z-direction translational acceleration at mass center, roil and pitch angular acceleration of fuselage for single and double stage oleo-pneumatic shock absorber at nose landing gear when a 6DOF rigid model is taxiing on the pound.

  • PDF

An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft (회전익 항공기 전륜착륙장치 단속거동 현상 개선연구)

  • Choi, Jae Hyung;Chang, Min Wook;Lee, Yoon-Woo;Yoon, Jong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.61-67
    • /
    • 2017
  • The Nose Landing Gear(NLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused stick-slip behavior when it was stationed on the ground. Therefore, this paper summarizes pilot comment in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

Design of Landing Gear Shock Absorber Using Pressure-relief Valve (Pressure-relief valve 를 적용한 착륙장치 완충장치 설계)

  • Kim, Tae-Uk;Shin, Jeong-Woo;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.508-511
    • /
    • 2008
  • The most landing gear use oleo-pneumatic shock strut to absorb the impact energy during touchdown. The shock strut is composed of the oil damper and the gas spring, especially the oil damper provides resistance force which is proportional to the square of landing speed. In case of high landing speed, the abnormal peak load can be occurred and transferred to the airframe structure. To prevent this, the pressure-relief valve is used to limit the damping force under the specific level. In this paper, it is presented the design process to find optimal damping and analysis results using pressure-relief valve.

  • PDF

Effects of Cavitation and Drop Characteristics on Oleo-Pneumatic Type Landing Gear Systems (공동현상을 고려한 유공압 방식 착륙장치의 낙하특성에 관한 연구)

  • Han, Jae-Do;Lee, Young-Sin;Kang, Yeon-Sik;Ahn, Oh-Sung;Kong, Jeong-Pyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • This paper investigated the drop characteristics of oleo pneumatic type landing gear for small aircraft and the effects of cavitations in modeling the landing gear system. The landing gear system employed a simple oleo pneumatic type damper without a metering pin. In general, oleo-pneumatic type landing gears are light-weighted because of it's simplicity, yet they offer excellent impact absorption characteristics. In this study, the landing gear system was modeled using MSC ADAMS, which offers a drop simulation module. After modeling the system, a series of testing was conducted, using a prototype landing gear system, to validate the analysis model and simulation results. The effect of cavitation was considered in the simulation model to obtain a better correlation between the test and simulation results. The results show that adding the cavitation effect in the simulation model significantly improved the simulation model and better captured the dynamic behaviors of the landing system. Using the 'cavitation' model, dynamics characteristics of the landing gear were further evaluated for other landing conditions, such as landing in various angles of slopes.

Analysis of Kinetic Differences According to Ankle Taping Types in Drop Landing (드롭랜딩 시 발목테이핑 유형에 따른 운동역학적 차이 분석)

  • Lee, Kyung-Ill;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • The purpose of this study was to compare and analyze kinetic variables of lower limbs according to types of ankle taping in drop landing. For this, targeting seven male basketball players (average age: $20.8{\pm}0.74yrs$, average height: $187.4{\pm}3.92cm$, average weight: $79.8{\pm}7.62kg$) with no instability of ankle joints, the drop landing motion was conducted according to three types of inelastic taping (C-type), elastic taping (K-type), and no treatment (N-taping). Based on the result, the next conclusion was reached. First, the effect of taping for the players with stable ankles was minimal and the high load on ankle joints offset the fixing effect of inelastic taping. Thus the inelastic taping for the players with stable ankles did not have an effect on the control of dorsal flexion during one-foot landing. Second, increasing angular velocity by increasing the movable range of knee joints disperses impact forces, yet inelastic taping restricted the range of knee joint motion and at the same time increased angular velocity, adding to a negative effect on knee joints. Third, inelastic taping induced inefficient motion of Lower limbs and unstable impact force control of ankle joints at the moment of landing and produced maximum vertical ground reaction force, which led to an increase of load. Therefore, inelastic ankle taping of players whose jump actions occur very often should be reconsidered. Also, it is thought that this study has a great meaning in proving the problem of inelastic taping related to knee pain with unknown causes.

Impact of solar storm on Navaids system (태양폭풍이 항행안전시설에 미치는 영향분석)

  • Jo, Jin-Ho;Park, Jae-Woo;Jeong, Cheol-Oh;Kim, Jae-Hoon;Kim, Gye-Hyeun;Park, Hyeung-Tak
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.13-17
    • /
    • 2012
  • The solar storm generated by solar activity can be impact on earth in various area. If solar storm impact on Navaids system, it will be a serious problem for aviation and human safety. The impact analysis of solar strom on Navaids system are performed in three area, ILS, GPS navigation and radio communication for aviation. Analysis result show that Instrument Landing System(LLZ, GP, MB) and Navaids system(VOR, DME, Radar) are not impacted by the solar storm, but GPS system is impacted by solar storm. Also analysis result show that VHF/UHF radio system are not impacted by solar storm, but HF radio system is impacted by solar storm.

Effect of Sports Taping on Impact Forces and Muscle Tuning during Drop Landing (드롭 착지 시 스포츠 테이핑이 하지의 충격력과 근육 조율에 미치는 영향)

  • Kang, Nyeon-Ju;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • The purpose of this study was to evaluate the biomechanical effect of sports taping on the lower limb during drop landing. Twelve male university students who have no musculoskeletal disorder were recruited as the subjects. Principal strain, median frequency, vertical GRF, loading rate, angular velocity and resultant joint moment were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between taped and untaped conditions(p<.05). The results showed that principal strain of the thigh and the shank in taping group were significantly less than those found in control group. These indicated that sports taping may prevent excessive mechanical strain caused by impact force during the deceleration phase. Flexion(-)-extension(+) and varus(-)-valgus(+) resultant joint moment of the knee joint in taping group were greater than corresponding value for control group. It seems that extensor muscle of the knee joint were not only supported by sports taping during knee flexion but also sports taping is effective for minimizing the possibility of injury.